Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 30(2): e14587, 2024 02.
Article in English | MEDLINE | ID: mdl-38421142

ABSTRACT

INTRODUCTION: Neonatal stress disrupts brain development and increases the risk of neurological disorders later in life. However, the impact of neonatal stress on the development of the glymphatic system and susceptibility to Parkinson's disease (PD) remains largely unknown. METHODS: Neonatal maternal deprivation (NMD) was performed on mice for 14 consecutive days to model chronic neonatal stress. Adeno-associated virus expressing A53T-α-synuclein (α-syn) was injected into the substantia nigra to establish PD model mice. Glymphatic activity was determined using in vivo magnetic resonance imaging, ex vivo fluorescence imaging and microplate assay. The transcription and expression of aquaporin-4 (AQP4) and other molecules were evaluated by qPCR, western blotting, and immunofluorescence. Animal's responses to NMD and α-syn overexpression were observed using behavioral tests. RESULTS: Glymphatic activity was impaired in adult NMD mice. AQP4 polarization and platelet-derived growth factor B (PDGF-B) signaling were reduced in the frontal cortex and hippocampus of both young and adult NMD mice. Furthermore, exogenous α-syn accumulation was increased and PD-like symptoms were aggravated in adult NMD mice. CONCLUSION: The results demonstrated that NMD could disrupt the development of the glymphatic system through PDGF-B signaling and increase the risk of PD later in life, indicating that alleviating neonatal stress could be beneficial in protecting the glymphatic system and reducing susceptibility to neurodegeneration.


Subject(s)
Glymphatic System , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Glymphatic System/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Substantia Nigra , Disease Models, Animal
2.
Anal Biochem ; 525: 100-106, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28263739

ABSTRACT

Microfluidic paper-based analytical devices (µPADs) have a significant potential in developing portable and disposable point-of-care testing (POCT). Herein, a facile, rapid, cost-effective and environment friendly strategy for µPADs fabrication is proposed. Specifically, the substrate paper was hydrophobized by coating with trimethoxysilane (TOS), and then the selected area was hydrophilized by treating with surfactant. The whole fabrication process was implemented within 7 min, with no need for complex pre-treatment, high-temperature and special equipment. As a proof-of-concept application, the as-prepared µPAD was applied to determination of the glucose content in human serum samples. The results agreed well with those obtained by a glucometer. We believe that the µPADs fabrication method proposed here could provide a facile, rapid and low-cost reference for other related studies.


Subject(s)
Blood Glucose/analysis , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Paper , Equipment Design , Humans , Hydrophobic and Hydrophilic Interactions , Point-of-Care Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...