Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Bioorg Chem ; 145: 107210, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364551

ABSTRACT

Hecogenin (HCG), a steroidal sapogenin, possesses good antitumor properties. However, the application of HCG for cancer treatment has been hindered primarily by its moderate potency. In this study, we incorporated triphenylphosphonium cation (TPP+) at the C-3 and C-12 positions through different lengths of alkyl chains to target mitochondria and enhance the efficacy and selectivity of the parent compound. Cytotoxicity screening revealed that most of the target compounds exhibited potent antiproliferative activity against five human cancer cell lines (MKN45, A549, HCT-116, MCF-7, and HepG2). Structure-activity relationship studies indicated that the TPP+ group significantly enhanced the antiproliferative potency of HCG. Among these compounds, 3c demonstrated remarkable potency against MKN45 cells with an IC50 value of 0.48 µM, significantly more effective than its parent compound HCG (IC50 > 100 µM). Further investigations into the mechanism of action revealed that 3c induced apoptosis of MKN45 cells through the mitochondrial pathway. In a zebrafish xenograft model, 3c inhibited the proliferation of MKN45 cells. Overall, these results suggest that 3c, with potent antiproliferative activity, may serve as a valuable scaffold for developing new antitumor agents.


Subject(s)
Antineoplastic Agents , Organophosphorus Compounds , Sapogenins , Animals , Humans , Molecular Structure , Sapogenins/pharmacology , Zebrafish , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Apoptosis , Drug Design
2.
Molecules ; 29(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338360

ABSTRACT

Currently, the obvious side effects of anti-tumor drugs, premature drug release, and low tumor penetration of nanoparticles have largely reduced the therapeutic effects of chemotherapy. A drug delivery vehicle (MCN-SS-GQDs) was designed innovatively. For this, the mesoporous carbon nanoparticles (MCN) with the capabilities of superior photothermal conversion efficiency and high loading efficiency were used as the skeleton structure, and graphene quantum dots (GQDs) were gated on the mesopores via disulfide bonds. The doxorubicin (DOX) was used to evaluate the pH-, GSH-, and NIR-responsive release performances of DOX/MCN-SS-GQDs. The disulfide bonds of MCN-SS-GQDs can be ruptured under high glutathione concentration in the tumor microenvironment, inducing the responsive release of DOX and the detachment of GQDs. The local temperature of a tumor increases significantly through the photothermal conversion of double carbon materials (MCN and GQDs) under near-infrared light irradiation. Local hyperthermia can promote tumor cell apoptosis, accelerate the release of drugs, and increase the sensitivity of tumor cells to chemotherapy, thus increasing treatment effect. At the same time, the detached GQDs can take advantage of their extremely small size (5-10 nm) to penetrate deeply into tumor tissues, solving the problem of low permeability of traditional nanoparticles. By utilizing the photothermal properties of GQDs, synergistic photothermal conversion between GQDs and MCN was realized for the purpose of synergistic photothermal treatment of superficial and deep tumor tissues.


Subject(s)
Antineoplastic Agents , Graphite , Hyperthermia, Induced , Nanoparticles , Neoplasms , Quantum Dots , Humans , Quantum Dots/chemistry , Graphite/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Doxorubicin , Nanoparticles/chemistry , Phototherapy , Carbon/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Disulfides , Tumor Microenvironment
3.
Pak J Pharm Sci ; 36(6): 1793-1801, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38124420

ABSTRACT

The water solubility and side effects of lamivudine limit its application for the treatment of viral hepatitis type B and human immunodeficiency virus. In order to increase the solubility of LA and improve the in vivo membrane permeability of the drug, LA was modified with hexadecane acid to prepare the prodrug lamivudine palmitic acid (LAP) and loaded into nanoemulsome (NES). LAP-NES was prepared by the thin film dispersion method. The LAP-NES showed the sustained release performance up to 72h in pH 7.4 PBS. Moreover, the pharmacokinetics of LAP-NES after tail vein injection in rats and the biodistribution characteristics were evaluated. The tmax of LAP-NES was 2.5h. The t1/2, clearance rate and average retention time of LAP-NES obviously prolonged compared with free LAP. The tissue biodistribution behavior of NES in vivo showed the good targeting in the liver and spleen, with the maximum at 4h and then the fluorescence slowly decreased until 72h. LAP-NES could significantly delay the release of LA in vivo, effectively prolong the elimination time and had obvious liver-targeting ability. In summary, LAP-NES shows great potential for liver-targeting delivery to increase the therapeutic effect and decrease the side effects of LA.


Subject(s)
Lamivudine , Palmitates , Rats , Humans , Animals , Tissue Distribution , Solubility , Liver
4.
Sci Total Environ ; 898: 165495, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37451446

ABSTRACT

The implications of climate change for rice yield have significant repercussions for food security, particularly in China, where rice cultivation is diverse, involving various cropping intensities, management practices, and climate conditions across numerous regions. The regional discrepancies in the impact of climate change on rice yield in China, however, are yet to be fully understood. Using the ORYZA(v3) model and future climate data from 2025 to 2084, gathered from ten climate models and three climate change scenarios (RCP2.6, RCP4.5, and RCP8.5), we conducted an investigation into these regional discrepancies. Our findings suggest a projected average decline in rice yield ranging from 3.7 % to 16.4 % under both rainfed and fully irrigated conditions across different scenarios. Central, eastern, and northwestern China could face the most significant climate change impacts on both rainfed and irrigated rice, with yield reductions reaching 41.5 %. In contrast, low levels of climate change under the RCP2.6 scenario may benefit northeastern (2.4 %) and southern (1.0 %) regions for rainfed and irrigated rice, respectively. Fertilization effects from elevated CO2 could counterbalance climate change's negative impact, resulting in yield increases in all Chinese rice-growing regions, excluding the northwest. The primary factor influencing rice yield changes in all regions under the RCP4.5 and RCP8.5 scenarios was temperature. However, precipitation, solar radiation, and relative humidity had notable and sometimes dominant effects, especially under the RCP2.6 scenario. These results highlight the divergent, even contradictory, rice yield responses to climate change across China, underlining the need to account for regional differences in large-scale impact studies. The study's findings can inform future policy decisions regarding ensuring regional and national food security in China.


Subject(s)
Oryza , Climate Change , China , Forecasting , Climate Models , Temperature
5.
Pharm Dev Technol ; 28(6): 501-508, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37191345

ABSTRACT

Immunotherapy is a promising cancer treatment strategy. In contrast, programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors are associated with low response rates and are only useful in a small group of cancer patients. A combination of treatments may be effective for overcoming this clinical issue. Preladenant is an adenosine (ADO) receptor inhibitor that can block the ADO pathway and improve the tumor microenvironment (TME), thereby enhancing the immunotherapeutic effect of PD-1 inhibitors. However, its poor water solubility and low targeting limit its clinical applications. We designed a PEG-modified thermosensitive-liposome (pTSL) loaded with ADO small molecule inhibitor preladenant (P-pTSL) to overcome these problems and enhance the effect of PD-1 inhibitor on breast cancer immunotherapy. The prepared P-pTSL was round and uniformly distributed with a particle size of (138.9 ± 1.22) nm, PDI: 0.134 ± 0.031, and zeta potential (-10.1 ± 1.63) mV; preladenant was released slowly at 37 °C but released fast at 42 °C from P-pTSL, which was 76.52 ± 0.44%. P-pTSL has good long-term and serum stability and excellent tumor-targeting ability in mice. Moreover, the combination with PD-1 inhibitor significantly enhanced the anti-tumor effect, and the improvement of related factors in serum and lymph was more obvious under the condition of 42 °C thermotherapy in vitro.


Subject(s)
Immune Checkpoint Inhibitors , Liposomes , Mice , Animals , Immunotherapy , Cell Line, Tumor , Immunity
7.
Drug Deliv ; 30(1): 2181746, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36803115

ABSTRACT

To improve the anti-metastasis effects of honokiol (HNK) on breast cancer, we designed cationic liposomes (Lip) in which HNK was encapsulated into Lip, and its surface was modified with negatively charged polysialic acid (PSA-Lip-HNK) for efficient treatment of breast cancer. PSA-Lip-HNK possessed a homogeneous spherical shape and high encapsulation efficiency. In vitro 4T1 cell experiments indicated that PSA-Lip-HNK increased cellular uptake and cytotoxicity via the endocytosis pathway mediated by PSA and selectin receptors. Furthermore, the significant antitumor metastasis impact of PSA-Lip-HNK was confirmed by wound healing and cell migration and invasion. Enhanced in vivo tumor accumulation of the PSA-Lip-HNK was observed in 4T1 tumor-bearing mice by living fluorescence imaging. For in vivo antitumor experiments using 4T1 tumor-bearing mice, PSA-Lip-HNK exhibited a higher tumor growth and metastasis inhibition compared with unmodified liposomes. Therefore, we believe that PSA-Lip-HNK well combined biocompatible PSA nano-delivery and chemotherapy, providing a promising drug delivery approach for metastatic breast cancer therapy.


Subject(s)
Breast Neoplasms , Animals , Humans , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Liposomes
8.
Colloids Surf B Biointerfaces ; 222: 113083, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36542948

ABSTRACT

Recently, the therapeutic effect of chemotherapy has been obviously impaired due to premature drug release, low tumor penetration, and multidrug resistance of nanoplatforms. In this paper, a novel multiple-sensitive drug delivery system (MC-ss-CDs) was developed by gating long-wavelength emitting carbon dots (CDs) on the openings of mesoporous carbon nanoparticles (MC) through disulfide bonds. The MC with excellent photothermal transition efficiency and high drug storage capacity for doxorubicin (DOX) was used as the delivery carrier. The CDs had multiple functions, including intelligent switching to hinder unwanted release, photothermal therapy (PTT) agents to improve the heat generation effect of MCs and bioimaging trackers to monitor drug delivery. The disulfide bonds, as the linkers between MC carriers and CDs, are stable under normal physical conditions and relatively labile under high GSH concentrations in the cytoplasm of tumor cells. After arriving at the tumor microenvironment, DOX/MC-ss-CDs can rapidly break into DOX/MC and CDs under high GSH concentrations. DOX/MC could realize efficient integration of PTT and chemotherapy on the surface of the tumor by stimuli-responsive DOX release and synergetic heating of MC and CDs. The small-sized CDs with excellent penetrating ability could effectively enter the deep tumor and realize NIR-triggered photothermal ablation. The DOX/MC-ss-CDs showed a chemophotothermal effect with a combination index of 0.38 in vitro and in vivo. Therefore, the DOX/MC-ss-CDs could be employed as a trackable nanovehicle for synergistic chemotherapy and PTT at different depths.


Subject(s)
Nanoparticles , Neoplasms , Humans , Nanoparticles/chemistry , Phototherapy/methods , Doxorubicin/chemistry , Drug Delivery Systems/methods , Neoplasms/drug therapy , Neoplasms/pathology , Carbon/chemistry , Disulfides/pharmacology , Cell Line, Tumor , Drug Liberation , Tumor Microenvironment
9.
AAPS PharmSciTech ; 24(1): 12, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36451071

ABSTRACT

Chronic lead poisoning has become a major factor in global public health. Chelation therapy is usually used to manage lead poisoning. Dimercaptosuccinic acid (DMSA) is a widely used heavy metal chelation agent. However, DMSA has the characteristics of poor water solubility, low oral bioavailability, and short half-life, which limit its clinical application. Herein, a long-cycle slow-release nanodrug delivery system was constructed. We successfully coated the red blood cell membrane (RBCM) onto the surface of dimercaptosuccinic acid polylactic acid glycolic acid copolymer (PLGA) nanoparticles (RBCM-DMSA-NPs), which have a long cycle and detoxification capabilities. The NPs were characterized and observed by particle size meters and transmission electron microscopy. The results showed that the particle size of RBCM-DMSA-NPs was approximately 146.66 ± 2.41 nm, and the zeta potential was - 15.34 ± 1.60 mV. The homogeneous spherical shape and clear core-shell structure of the bionic nanoparticles were observed by transmission electron microscopy. In the animal tests, the area under the administration time curve of RBCM-DMSA-NPs was 156.52 ± 2.63 (mg/L·h), which was 5.21-fold and 2.36-fold that of free DMSA and DMSA-NPs, respectively. Furthermore, the median survival of the RBCM-DMSA-NP treatment group (47 days) was 3.61-fold, 1.32-fold, and 1.16-fold for the lead poisoning group, free DMSA, and DMSA-NP groups, respectively. The RBCM-DMSA-NP treatment significantly extended the cycle time of the drug in the body and improved the survival rate of mice with chronic lead poisoning. Histological analyses showed that RBCM-DMSA-NPs did not cause significant systemic toxicity. These results indicated that RBCM-DMSA-NPs could be a potential candidate for long-term chronic lead exposure treatment.


Subject(s)
Lead Poisoning , Nanoparticles , Animals , Mice , Antidotes , Biomimetics , Heavy Metal Poisoning , Succimer/therapeutic use , Lead Poisoning/drug therapy
10.
J Mass Spectrom ; 57(7): e4871, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35739062

ABSTRACT

Lurasidone is an antipsychotic drug clinically used for the treatment of schizophrenia and bipolar disorder. During a mechanism-based forced degradation study of lurasidone, two novel degradation products were observed under free radical-mediated oxidative (via AIBN) and solution photolytic conditions. The structures of the two novel degradants were identified through an approach combining HPLC, LC-MSn (n = 1, 2), preparative HPLC purification and NMR spectroscopy. The degradant formed under the free radical-mediated condition is an oxidative degradant with half of the piperazine ring cleaved to form two formamides; a mechanism is proposed for the formation of the novel N,N'-diformyl degradant, which should be readily applicable to other drugs that contain a piperazine moiety that is widely present in drug molecules. The degradant observed under the solution photolytic condition is identified as the photo-induced isomer of lurasidone with the benzisothiazole ring altered into a benzothiazole ring.


Subject(s)
Lurasidone Hydrochloride , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Drug Stability , Free Radicals , Magnetic Resonance Spectroscopy/methods , Oxidative Stress , Piperazines/chemistry , Tandem Mass Spectrometry/methods
11.
Sci Total Environ ; 834: 155260, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35439508

ABSTRACT

Different species within the same community may exhibit distinct phenological responses to climate change, so it is necessary to study species differences in the green-up date among abundant species within a wide area, and a suitable phenology model should be introduced to explain the associated climate-driven mechanism. Although various models have been developed, very few studies have aimed to compare their efficiency and robustness, and the relative contributions of climate driving factors have not been sufficiently examined. We analyzed phenology data for 12 species across 17 stations in Inner Mongolia and found that essential spatiotemporal and interspecies differences existed in the green-up date. Five process-based models were established for each species and their performance was comprehensively evaluated. The two-phase models (sequential model, parallel model, unified model and unified model combined with precipitation driving) generally performed better than the one-phase model (thermal time model), and the model considering precipitation performed the best, which indicates that it is necessary to introduce the chilling effect and precipitation driving effect to improve the model accuracy in arid environments. We proposed a method to estimate the contribution rates of various climate driving factors, and significant differences in the relative demand for the various climate driving factors among different species were clearly revealed. The results indicated that for natural vegetation in Inner Mongolia, the need for the chilling and temperature driving is relatively high, and the precipitation driving is very important for herbaceous vegetation, which leads to considerable spatial and interspecies differences in green-up date. We demonstrated the feasibility of quantitatively evaluating the contributions of different climate driving factors with a process-based model, and the contradiction in phenological changes among different studies may eventually be clarified.


Subject(s)
Climate Change , China , Seasons , Species Specificity , Temperature
12.
J Pharm Biomed Anal ; 210: 114540, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34954487

ABSTRACT

During the related substances testing method development for linagliptin tablet, an unknown peak was observed in HPLC chromatograms with a level exceeding the identification threshold. By using a strategy that combines LC-PDA/UV-MSn with mechanism-based stress studies, the unknown peak was rapidly identified as linagliptin urea, a solution degradant that is caused by the reaction between the API and hydrocyanic acid with sonication treatment to accelerate dissolution of the drug substance in sample preparation of linagliptin tablets, and hydrocyanic acid is a known impurity in HPLC grade acetonitrile and acetonitrile is used as part of diluent. The mechanism of the solution degradation chemistry was verified by stressing linagliptin API with trimethylsilyl cyanide (TMSCN, which can give off HCN slowly in the presence of water) treated with sonication in the sample preparation. Further investigation found that when the sonication treatment was replaced by vortex vibration in the process of the sample preparation, the RRT 1.28 species was decreased to below the level of the detection limit (0.02%). The structure of this impurity was further confirmed through the synthesis of the impurity and subsequent structure characterization by 1D and 2D NMR. Due to the presence of trace amount of HCN in HPLC grade acetonitrile, these types of solution degradation would likely occur in analysis of pharmaceutical finished products containing APIs with primary and secondary amine moieties drug product during sample preparations, particularly when sonication treatment is used to accelerate dissolution of drug substance from the finished drug product. In the GMP quality control laboratories, such events may trigger undesirable out-of-specification (OOS) events. Hence, the results of this paper can help to prevent these events from happening in the first place or resolve these OOS events in GMP laboratories.


Subject(s)
Linagliptin , Sonication , Acetonitriles , Chromatography, High Pressure Liquid , Drug Contamination , Tablets , Urea
13.
Rapid Commun Mass Spectrom ; 35(9): e9062, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33533047

ABSTRACT

RATIONALE: The focus of this work was to study glycosylamine and Amadori rearrangement products (ARPs), the two major degradants in the Maillard reactions of pharmaceutical interest, and utilize their MS2 fingerprints by liquid chromatography/high-resolution tandem mass spectrometry (LC/HRMS2 ) to quickly distinguish the two isomeric degradants. These two types of degradants are frequently encountered in the compatibility and stability studies of drug products containing primary or secondary amine active pharmaceutical ingredients (APIs), which are formulated with excipients consisting of reducing sugar functionalities. METHODS: Vortioxetine was employed as the primary model compound to react with lactose to obtain the glycosylamine and ARP degradants of the Maillard reaction, and their MS2 spectra (MS2 fingerprints) were obtained by LC/MS2 . Subsequently, the two degradants were isolated via preparative HPLC and their structures were confirmed by one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) determination. RESULTS: The MS2 fingerprints of the two degradants display significantly different profiles, despite the fact that many common fragments are observed. Specifically, protonated glycosylamine shows a prominent characteristic fragment of [Mvort + C2 H3 O]+ at m/z 341 (Mvort is the vortioxetine core), while protonated ARP shows a prominent characteristic fragment of [Mvort + CH]+ at m/z 311. Further study of the Maillard reactions between several other structurally diverse primary/secondary amines and lactose produced similar patterns. CONCLUSIONS: The study suggests that the characteristic MS2 fragment peaks and their ratios may be used to differentiate the glycosylamine and ARP degradants, the two isomeric degradants of the Maillard reaction, which are commonly encountered in finished dosage forms of pharmaceutical products containing primary and secondary amine APIs.

14.
Pharm Dev Technol ; 26(1): 81-91, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33070668

ABSTRACT

Nanostructured lipid carriers (NLC) have become a research hotspot, wherein cancer-targeting effects are enhanced and side effects of chemotherapy are overcome. Usually, accelerated blood clearance (ABC) occurs after repeated injections, without changing the immunologic profile, despite PEGylation which prolongs the circulation function. To overcome these problems, we designed a red blood cell-membrane-coated NLC (RBCm-NLC), which was round-like, with a particle size of 60.33 ± 3.04 nm and a core-shell structure. Its stability was good, the drug paclitaxel (PTX) release from RBCm-PTX-NLC was less than 30% at pH7.4 and pH6.5, and the integrity of RBC membrane surface protein was maintained before and after preparation. Additionally, in vitro assays showed that, with the RBCm coating, the cellular uptake of the NLC by cancer cells was significantly enhanced. RBCm-NLC can avoid recognition by macrophage cells and prolong circulation time in vivo. In S180 tumor-bearing mice, the DiR-labeled RBCm-NLC group showed a stronger fluorescence signal and longer retention in tumor tissues, indicating a prompt tumor-targeting effect and extended blood circulation. Importantly, RBCm-PTX-NLC enhanced the antitumor effect and extended the survival period significantly in vivo. In summary, biomimetic NLC offered a novel strategy for drug delivery in cancer therapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Biomimetic Materials/chemical synthesis , Biomimetics/methods , Drug Carriers/chemical synthesis , Nanostructures/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Biomimetic Materials/administration & dosage , Biomimetic Materials/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Drug Carriers/administration & dosage , Drug Carriers/metabolism , Drug Evaluation, Preclinical/methods , Female , Lipids , Male , Mice , Nanostructures/administration & dosage , RAW 264.7 Cells , Xenograft Model Antitumor Assays/methods
15.
Front Bioeng Biotechnol ; 8: 567584, 2020.
Article in English | MEDLINE | ID: mdl-33072725

ABSTRACT

A spherical iron oxide precursor was prepared using a solvothermal method, and then treated thermally at 400°C to obtain α-Fe2O3 nanoparticles. The structures and morphology of the as-obtained products were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results showed that the diameter of the α-Fe2O3 nanoparticles was approximately 500 nm. In addition, we formed the α-Fe2O3 nanoparticles into a thick film as a gas sensor and performed a gas sensing test. When the working temperature was set at 250°C, the α-Fe2O3 nanoparticle displayed very good selectivity and high sensitivity for trimethylamine (TMA). The minimum detection was as low as 1 ppm, and the response value for 100 ppm TMA gas was 27.8. Taken together, our findings illustrated that the α-Fe2O3 nanoparticles could be used as a gas-sensitive material to test the freshness of fish.

16.
Pharm Res ; 37(7): 136, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32642838

ABSTRACT

PURPOSE: The goal of the study was to elucidate the structure of a new degradant (1,3'-Dimer), generated in the stability testing of ropinirole extended-release tablets, and the formation mechanism of 1,3'-Dimer and its isomer (3,3'-Dimer). METHODS: The strategy of combining LC-PDA/UV-MSn (n = 1, 2) and NMR in conjunction with mechanism-based forced degradation study was employed to identify the structure of the unknown degradant and the formation mechanism of this dimeric degradant as well as its isomer, 3,3'-Dimer. The forced degradation was conducted by treating ropinirole API with formaldehyde under alkaline catalysis. A compatibility study between ropinirole and lactose was also performed. RESULTS: The degradant was isolated from the forced degradation sample and characterized by LC-PDA/UV-MSn as well as NMR measurement. The impurity was identified as a new dimeric degradant of ropinirole connected by a methylene bridge via the 1- and 3'-position of each ropinirole unit (i.e., 1,3'-Dimer of ropinirole), which is an isomer of a known dimeric degradant of ropinirole, namely 3,3'-Dimer. CONCLUSIONS: The newly occurred unknown degradant in ropinirole extended-release tablets was elucidated as the methylene-bridged 1,3'-Dimer of ropinirole. Based on the mechanistic study, 1,3'-Dimer and its isomer (3,3'-Dimer) were both formed by the reaction of ropinirole with residual formaldehyde present or formed in lactose, a main excipient of the formulation.


Subject(s)
Indoles/chemistry , Delayed-Action Preparations , Dimerization , Drug Compounding , Drug Stability , Excipients/chemistry , Formaldehyde/chemistry , Kinetics , Lactose/chemistry , Molecular Structure , Water/chemistry
17.
Nanoscale Res Lett ; 15(1): 123, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32488526

ABSTRACT

An enzyme-responsive colon-specific delivery system was developed based on hollow mesoporous silica spheres (HMSS) to which biodegradable chitosan (CS) was attached via cleavable azo bonds (HMSS-N=N-CS). Doxorubicin (DOX) was encapsulated in a noncrystalline state in the hollow cavity and mesopores of HMSS with the high loading amount of 35.2%. In vitro drug release proved that HMSS-N=N-CS/DOX performed enzyme-responsive drug release. The grafted CS could increase the biocompatibility and stability and reduce the protein adsorption on HMSS. Gastrointestinal mucosa irritation and cell cytotoxicity results indicated the good biocompatibility of HMSS and HMSS-N=N-CS. Cellular uptake results indicated that the uptake of DOX was obviously increased after HMSS-N=N-CS/DOX was preincubated with a colonic enzyme mixture. HMSS-N=N-CS/DOX incubated with colon enzymes showed increased cytotoxicity, and its IC50 value was three times lower than that of HMSS-N=N-CS/DOX group without colon enzymes. The present work lays the foundation for subsequent research on mesoporous carriers for oral colon-specific drug delivery.

18.
J Pharm Biomed Anal ; 188: 113361, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32526621

ABSTRACT

During our method development for residual formaldehyde detection in a drug substance, unusually high levels of formaldehyde were detected when using a mixed solvent of EtOH/DMSO (4:1, v/v) as sample diluent in headspace GC analysis (HS-GC). Initial investigation found that formaldehyde is used in the preparation for one of the starting materials of the drug substance. Nevertheless, there is neither other source of formaldehyde in the manufacturing process of the drug substance, nor would formaldehyde be generated during the process. In the ensuing root cause investigation, it was found that once the solvent DMSO is replaced by other solvent [e.g., N,N-dimethylformamide (DMF)], while keeping other method parameters unchanged in the HS-GC analysis, the level of formaldehyde in the same batch of the drug substance became undetectable (LOD: 3 ppm). All the evidence suggested that the observed formaldehyde in the HS-GC analysis might be due to the decomposition of DMSO, which could be facilitated by the presence of this particular drug substance. In other words, the presence of the drug substance (in the form of HCl salt) would cause a minor decomposition of DMSO to produce formaldehyde. To prove this hypothesis, a GC-MS experiment of the drug substance was conducted in which deuterated DMSO (DMSO-d6) was used in place of regular DMSO; the expected deuterated derivatization product, i.e., diethoxymethane-d2 (C2H5OCD2OC2H5), was observed in the HS-GC-MS analysis. Therefore, it became clear that this drug substance facilitates the minor decomposition of DMSO in the HS-GC analysis. In such a case, formaldehyde is an artifact peak, or ghost peak, rather than a true impurity of the drug substance. The false positive results of formaldehyde were also found in other four compounds (three drug substances and one reagent) which are all in the form of HCl or HBr salts, suggesting that generation of formaldehyde from DMSO could be a widely occurred phenomenon in HS-GC analysis of alkyl amines in the form of HCl or HBr salts, when DMSO-containing diluents are used during sample preparation.


Subject(s)
Artifacts , Dimethyl Sulfoxide , Formaldehyde , Gas Chromatography-Mass Spectrometry , Solvents/analysis
19.
Carbohydr Polym ; 240: 116325, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32475585

ABSTRACT

Based on the antisolvent and electrostatic deposition methods, we fabricated zein/hyaluronic acid core-shell nanoparticles loaded with honokiol (HA-Zein-HNK), which could target delivery and enhance the therapeutic effect of the HNK. The prepared nanoparticles were found to have a mean size of 210.4 nm and negative surface charge. The HA-Zein-HNK nanoparticles exhibited improved antiproliferative and pro-apoptotic activities against 4T1 cells. Of note, the wound healing and transwell assessments indicated that the migration and invasion of 4T1 cells were markedly weakened by HA-Zein-HNK. Mechanistic insights revealed that HA-Zein-HNK downregulated the expressions of Vimentin and upregulated the expressions of E-cadherin. More importantly, an in vivo tissue distribution study demonstrated the excellent tumor target ability of HA-Zein. And these results correspond with the superior therapeutic efficacy of HA-Zein-HNK in 4T1 tumor bearing mice. In conclusion, we believe that HA-Zein nanoparticles may be served as a promising HNK delivery carrier for metastatic breast cancer therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biphenyl Compounds/pharmacology , Breast Neoplasms/drug therapy , Hyaluronic Acid/pharmacology , Lignans/pharmacology , Nanoparticles/chemistry , Zein/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Biphenyl Compounds/chemistry , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Screening Assays, Antitumor , Female , Hyaluronic Acid/chemistry , Lignans/chemistry , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Tumor Cells, Cultured , Zein/chemistry
20.
Carbohydr Polym ; 235: 115981, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32122511

ABSTRACT

In an effort to enhance antitumor and anti-metastasis of breast cancer, honokiol (HNK) was encapsulated into hyaluronic acid (HA) modified cationic liposomes (Lip). The prepared HA-Lip-HNK had a spherical shape with a narrow size distribution. The enhanced antitumor efficacy of HA-Lip-HNK was investigated in 4T1 cells in vitro, wherein flow cytometry and confocal microscopy analysis revealed its HA/CD44-mediated greater cellular internalization. As anticipate, the significant cytotoxicity of the HA-Lip-HNK was also observed in 4T1 tumor spheroids. Furthermore, the superior prevention of tumor metastasis by HA-Lip-HNK was verified by in vitro anti-invasion, wound healing and anti-migration assessments, and in vivo bioluminescence imaging in pulmonary metastasis model. Finally, compared with unmodified liposomes, the HA-Lip-HNK exhibited higher tumor accumulation, and achieved a tumor growth inhibition rate of 59.5 %. As a result, the HA-Lip-HNK may serve as a promising tumor-targeted drug delivery strategy for the efficient therapy of metastatic breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Breast Neoplasms/drug therapy , Hyaluronic Acid/pharmacology , Lignans/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Nanoparticles/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/chemistry , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Delivery Systems , Drug Screening Assays, Antitumor , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Injections, Intravenous , Lignans/administration & dosage , Lignans/chemistry , Lung Neoplasms/pathology , Mice , Nanoparticles/administration & dosage , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...