Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Chin J Traumatol ; 27(3): 153-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38458896

ABSTRACT

PURPOSE: Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries. METHODS: This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q1, Q3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. RESULTS: According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval (CI): 2.08 - 25.42, p = 0.002), 2.85 (95% CI: 1.11 - 7.31, p = 0.030), 2.62 (95% CI: 1.12 - 6.13, p = 0.027), 2.44 (95% CI: 1.25 - 4.76, p = 0.009), and 1.5 (95% CI: 1.10 - 2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ2 = 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ2 = 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. CONCLUSION: Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.


Subject(s)
Accidents, Traffic , Brain Edema , Brain Injuries, Traumatic , Humans , Brain Injuries, Traumatic/complications , Risk Factors , Male , Female , Case-Control Studies , Brain Edema/etiology , Brain Edema/diagnostic imaging , Adult , Middle Aged , Logistic Models
2.
Chin J Traumatol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38350782

ABSTRACT

The treatment strategy for blast injuries is closely linked to the clinical outcome of blast injury casualties. However, the application of military surgery experience to blast injuries caused by production safety accidents is relatively uncommon. In this study, the authors present 2 cases of blast injuries caused by one gas explosion, both cases involved individuals of the same age and gender and experienced similar degree of injury. The authors highlight the importance of using a military surgery treatment strategy, specifically emphasizing the need to understand the concept of damage control and disposal. It is recommended that relevant training in this area should be strengthened to improve the clinical treatment of such injuries. This study provides a valuable reference for healthcare professionals dealing with blast injuries.

3.
Int J Mol Med ; 40(4): 1019-1028, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28848993

ABSTRACT

Deep vein thrombosis (DVT) is a disease involving multiple genes and systems. MicroRNAs (miRNAs) represent a class of non-coding small RNAs that post-transcriptionally suppress their target genes. The expression patterns of miRNA and messenger RNA (mRNA) in DVT remain poorly characterized. The aim of the present study was to evaluate miRNA and mRNA expression profiles in a stasis-induced DVT rat model. Male SD rats were randomly divided into three groups as follows: DVT, sham and control. The inferior vena cava (IVC) of rats was ligated to construct stasis-induced DVT models. Rats were sacrificed three days after ligation, and morphological changes in the vein tissues were observed by hematoxylin and eosin and Masson staining. The miRNA and mRNA expression profiles were evaluated by microarrays, followed by bioinformatics analysis. The microarray analysis identified 22 miRNAs and 487 mRNAs that were significantly differentially expressed between the experimental and control groups, and between the experimental and sham groups, but not between the control and sham groups (P≤0.05; ≥2.0­fold change). By subsequent bioinformatics analysis, a 19 miRNA-98 mRNAs network was constructed in the stasis-induced DVT rat model. Notably, the majority of these miRNAs and mRNAs are reported to be expressed by endothelial cells (ECs) and are associated with the function of ECs. The results provide evidence indicating that the regulatory association of miRNA and mRNA points to key roles played by ECs in thrombosis. These findings advance our understanding of the molecular regulatory mechanisms underlying the pathophysiology of DVT.


Subject(s)
Endothelial Cells/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger/genetics , Vena Cava, Inferior/metabolism , Venous Thrombosis/genetics , Animals , Computational Biology/methods , Disease Models, Animal , Endothelial Cells/pathology , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Male , MicroRNAs/metabolism , Molecular Sequence Annotation , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Vena Cava, Inferior/pathology , Vena Cava, Inferior/surgery , Venous Thrombosis/metabolism , Venous Thrombosis/pathology
4.
Forensic Sci Int ; 272: 104-110, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28129582

ABSTRACT

The combined use of multiple markers is considered a promising strategy in estimating the age of wounds. We sought to develop an "up, no change, or down" system and to explore how to combine and use various parameters. In total, 78 Sprague Dawley rats were divided randomly into a control group and contusion groups of 4-, 8-, 12-, 16-, 20-, 24-, 28-, 32-, 36-, 40-, 44-, and 48-h post-injury (n=6 per group). A contusion was produced in the right limb of the rats under diethyl ether anesthesia by a drop-ball technique; the animals were sacrificed at certain time points thereafter, using a lethal dose of pentobarbital. Levels of PUM2, TAB2, GJC1, and CHRNA1 mRNAs were detected in contused muscle using real-time PCR. An up, no change, or down system was developed with the relative quantities of the four mRNAs recorded as black, dark gray, or light gray boxes, representing up-, no change, or down-regulation of the gene of interest during wound repair. The four transcripts were combined and used as a marker cluster for color model analysis of each contusion group. Levels of PUM2, TAB2, and GJC1 mRNAs decreased, whereas that of CHRNA1 increased in wound repair (P<0.05). The up, no change, or down system was adequate to distinguish most time groups with the color model. Thus, the proposed up, no change, or down system provide the means to determine the minimal periods of early wounds.


Subject(s)
Contusions/metabolism , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Connexins/genetics , Connexins/metabolism , Contusions/pathology , Fluorescence , Forensic Pathology/methods , Microscopy , Models, Animal , Muscle, Skeletal/injuries , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Time Factors
5.
J Forensic Leg Med ; 43: 90-96, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27497723

ABSTRACT

The inter-group heterogeneity and intra-group homogeneity of relative expression are very necessary when the mRNA were used to determine wound age accurately in forensic medicine. The aim of this study was to assess the intra-group homogeneity of SFRP5, FZD4 and Fosl1 mRNAs in post-injury intervals. The corresponding proteins show different subcellular locations. A total of 78 Sprague-Dawley rats were divided into control and contusion groups. At 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, or 48 h (n = 6 per group) after contusion (under anesthesia by chloral hydrate intraperitoneally), the rats were sacrificed using a lethal dose of pentobarbital, and samples of the injured muscles were collected. The raw Ct values of SFRP5, FZD4, and Fosl1 mRNAs were obtained using real-time PCR. After normalized to RPL13 mRNA levels, the coefficient of variation (CV) and the relative average deviation (d%) of each normalized Ct, and their relative expression levels, were calculated in each post-injury interval. Two methods were applied to compare the homogeneity of the three genes. First, each gene was given a score based on its CV value in each post-injury interval. Then, the sum of the 13 scores was calculated; a low sum indicated high homogeneity. Second, the 13 calculated CVs or d%s were used as raw data, which was described as the mean ± SD. Based on this mean ± SD, a CV of the CVs and a d% of the d%s were calculated to represent the variation; a low value indicated high homogeneity. The sum of the variability of FZD4 mRNA was lower than those of the SFRP5 and Fosl1 mRNAs, consistent with the results that the FZD4 mRNA had the lowest mean, the smallest CV of all CVs, and the smallest d% of all d%s, among the three genes. In conclusion, these data indicated that mRNA encoding membranous FZD4 was likely to be more homogeneous than those encoding SFRP5 and Fosl1 within post-injury intervals.


Subject(s)
Adipokines/genetics , Contusions/metabolism , Frizzled Receptors/genetics , Proto-Oncogene Proteins c-fos/genetics , RNA, Messenger/metabolism , Wound Healing/physiology , Adipokines/metabolism , Animals , Biomarkers/metabolism , Contusions/pathology , Forensic Pathology , Frizzled Receptors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Time Factors
6.
Fa Yi Xue Za Zhi ; 31(5): 337-40, 2015 Oct.
Article in Chinese | MEDLINE | ID: mdl-26821471

ABSTRACT

OBJECTIVE: To investigate the relationship between the expression of secreted frizzled-related protein 5 (SFRP5) mRNA and the time interval after skeletal muscle injury in rats by real-time PCR. METHODS: A total of ninety SD rats were randomly divided into the contusion groups at different times including 4h, 8h, 12h, 16h, 20h, 24h, 28h, 32h, 36h, 40h, 44h, 48h after contusion, incision groups at different times including 4h and 8h after incision and the control group. The samples were taken from the contused zone at different time points. The total RNA was isolated from the samples and reversely transcribed to analyze the expression levels of SFRP5 mRNA. RESULTS: Compared to the control group, the expression of SFRP5 mRNA in contusion groups were down-regulated within 48 h after contusion and reached the lowest level at 20 h, and the expression of SFRP5 mRNA gradually increased from 20 h to 48 h after contusion. The expression of SFRP5 mRNA in the incised groups were significantly lower than that of the contusion groups at 4 h after injury. At the time of 8 h, the expression levels between the contusion and incision groups showed no statistically significant difference. CONCLUSION: It is suggested that SFRP5 mRNA analysis may show regular expression and can be a marker for estimation of skeletal muscle injury age.


Subject(s)
Contusions/metabolism , Membrane Proteins/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Animals , Biomarkers/metabolism , RNA, Messenger , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...