Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 917: 174748, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34999086

ABSTRACT

Acute lung injury (ALI) is a pulmonary disease with high mortality. The present study investigated the protective effect of isoorientin (ISO) on lipopolysaccharide (LPS)-induced ALI compared with Thalictrum minus L. (TML). The experimental ALI was achieved by LPS via endotracheal drip, ISO and TML (40 mg/kg) were administered orally 1 h prior to LPS. ISO treatment significantly protected mice from ALI and exhibited similar efficacy as TML. Administration of ISO markedly corrected weight loss and improved lung pathological damage caused by LPS. Meanwhile, a decline of lung wet to dry weight (W/D) ratios and total protein in bronchoalveolar fluid (BALF) demonstrated that ISO mitigated pulmonary edema and vascular leakage of ALI mice. Moreover, ISO also signally decreased oxidative stress and suppressed the content of interleukin-6 (IL-6) in BALF. Additionally, ISO significantly promoted the expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and down-regulated kelch-like ECH-associated protein 1 (Keap1). Simultaneously, it suppressed the over-expression of NOD-, LRR- and pyrin domain-containing 3 (NLRP3), caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC) and pro-inflammatory cytokines interleukin IL-1ß (pro-IL-1ß), and inhibited the expression of apoptotic related proteins induced by LPS challenge. Meanwhile, the results of molecular docking indicated the potential ability of ISO as a ligand binding with proteins Keap1, NLRP3 and cleaved-caspase-3 as well. These findings demonstrated that ISO might be one of the bioactive components of TML in the treatment of ALI and provided a rationale for future clinical applications and potential protective strategies for ALI.


Subject(s)
Kelch-Like ECH-Associated Protein 1
2.
Microb Pathog ; 147: 104292, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32505653

ABSTRACT

BACKGROUND AND AIMS: Helicobacter pylori (H. pylori) infection can occur in early childhood, without eradication therapies such infection can persist throughout life and cause many different diseases. This study investigated the metabolic characteristics and explored the underlying mechanism of children with H. pylori infection, and identified potential biomarkers for evaluating the efficacy of H. pylori eradication therapies. METHODS: We performed 1H NMR-based metabonomics coupled with multivariate analysis to investigate the metabolic profiling of serum samples between Children with and without H. pylori infection. In the same manner, we compared the alternations of metabolites in H. pylori-infected children before and after H. pylori eradication therapies. RESULTS: 21 metabolites from serum in H. pylori-infected and H. pylori-uninfected children were identified, which were mainly involved in energy, amino acid, lipid and microbial metabolism. We found that the serum levels of trimethylamine N-oxide and alanine were significantly higher in H. pylori-infected children compared to uninfected sera, whereas lactate was significantly lower. We also found that the levels of trimethylamine N-oxide and creatine in H. pylori-infected children was significantly decreased after H. pylori eradication therapies, whereas lactate and low-density lipoprotein/very low-density lipoprotein was significantly increased. CONCLUSIONS: This is the first study using 1H NMR-based metabolomics approach to explore the effects of H. pylori infection in children. Our results demonstrated that the disturbances of metabolism in energy, amino acids, lipids and microbiota could play an important role in the pathogenesis of gastrointestinal and extragastric diseases caused by H. pylori infection. Trimethylamine N-oxide and lactate might serve as potential serum biomarkers for evaluating the efficacy of H. pylori eradication therapies.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Microbiota , Child , Child, Preschool , Humans , Metabolomics , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...