Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(15): 6475-6481, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32687715

ABSTRACT

The nodal-line semimetal is a new type of topological state of matter in which the crossing of two energy bands forms a nodal loop. In the absence of spin-orbit coupling, Mg3Bi2 is predicted as a type II nodal-line semimetal, which may evolve to a topological insulator with a small energy gap of ∼35 meV in the presence of spin-orbit coupling. However, the transport evidence is still lacking. Here, we measure the magneto-transport in Mg3Bi2. At low temperatures, the magnetoconductivity exhibits a weak antilocalization behavior. We fit the experimental data with a magnetoconductivity formula for the weak antilocalization effect of three-dimensional nodal-line semimetals as well as the well-known Hikami-Larkin-Nagaoka formula for two-dimensional weak (anti)localization effects. By comparing the fitting results of these two theories, we demonstrate that the weak antilocalization in Mg3Bi2 is better described by the theory for nodal-line semimetals. Our work will inspire more explorations to use the new weak localization theory to identify a large spectrum of nodal-line semimetals.

2.
J Phys Condens Matter ; 32(40): 405605, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32526723

ABSTRACT

Temperature and field-dependent magnetization M(T, H ) measurements and neutron scattering study of a single crystal CeSb2 are presented. Several anomalies in magnetization curves have been confirmed, i.e., at 15.6 K, 12 K, and 9.8 K, respectively. These three transitions are all metamagnetic transitions, which shift to lower temperatures as the magnetic field increases. In contrast to the previous studies that the anomaly at 15.6 K has been suggested as paramagnetic to ferromagnetic phase transition, in our measurement no hysteresis loop around zero field with either H ∥ c or H ⊥ c has been observed. The anomaly located at around 12 K is antiferromagnetic-like transition, and this turning point will clearly split into two when the magnetic field H ⩾ 2 kOe. A neutron scattering study reveals that the low temperature ground state of CeSb2 orders magnetically with commensurate propagation wave vectors k = (-1, ±1/6, 0) and k = (±1/6, -1, 0), with phase transition temperature T C ∼ 9.8 K.

3.
Sci Rep ; 8(1): 7835, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29777173

ABSTRACT

We have successfully synthesized single crystals of UAu0.8Sb2 using a flux method and present a comprehensive study of its physical properties by measuring the magnetic susceptibility, electrical resistivity and specific heat. Evidence for at least three magnetic phases is observed in the field-temperature phase diagram of UAu0.8Sb2. In zero field, the system undergoes an antiferromagnetic transition at 71 K, and upon further cooling it passes through another antiferromagnetic phase with a ferromagnetic component, before reaching a ferromagnetic ground state. A complex magnetic field-temperature phase diagram is obtained for fields along the easy c-axis, where the antiferromagnetic order eventually becomes polarized upon applying a magnetic field.

4.
Sci Adv ; 4(1): eaao6791, 2018 01.
Article in English | MEDLINE | ID: mdl-29349301

ABSTRACT

Searching for heavy fermion (HF) states in non-f-electron systems becomes an interesting issue, especially in the presence of magnetism, and can help explain the physics of complex compounds. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy, physical properties measurements, and the first-principles calculations, we observe the HF state in a 3d-electron van der Waals ferromagnet, Fe3GeTe2. Upon entering the ferromagnetic state, a massive spectral weight transfer occurs, which results from the exchange splitting. Meanwhile, the Fermi surface volume and effective electron mass are both enhanced. When the temperature drops below a characteristic temperature T*, heavy electrons gradually emerge with further enhanced effective electron mass. The coexistence of ferromagnetism and HF state can be well interpreted by the dual properties (itinerant and localized) of 3d electrons. This work expands the limit of ferromagnetic HF materials from f- to d-electron systems and illustrates the positive correlation between ferromagnetism and HF state in the 3d-electron material, which is quite different from the f-electron systems.

5.
Sci Rep ; 6: 33613, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27641364

ABSTRACT

We show the three-dimensional electronic structure of the Kondo lattice CeIn3 using soft x-ray angle resolved photoemission spectroscopy in the paramagnetic state. For the first time, we have directly observed the three-dimensional topology of the Fermi surface of CeIn3 by photoemission. The Fermi surface has a complicated hole pocket centred at the Γ-Z line and an elliptical electron pocket centred at the R point of the Brillouin zone. Polarization and photon-energy dependent photoemission results both indicate the nearly localized nature of the 4f electrons in CeIn3, consistent with the theoretical prediction by means of the combination of density functional theory and single-site dynamical mean-field theory. Those results illustrate that the f electrons of CeIn3, which is the parent material of CeMIn5 compounds, are closer to the localized description than the layered CeMIn5 compounds.

SELECTION OF CITATIONS
SEARCH DETAIL