Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagn Pathol ; 19(1): 66, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730456

ABSTRACT

BACKGROUND: TFEB/6p21/VEGFA-amplified renal cell carcinoma (RCC) is rare and difficult to diagnose, with diverse histological patterns and immunohistochemical and poorly defined molecular genetic characteristics. CASE PRESENTATION: We report a case of a 63-year-old male admitted in 2017 with complex histomorphology, three morphological features of clear cell, eosinophilic and papillary RCC and resembling areas of glomerular and tubular formation. The immunophenotype also showed a mixture of CD10 and P504s. RCC with a high suspicion of collision tumors was indicated according to the 2014 WHO classification system; no precise diagnosis was possible. The patient was diagnosed at a different hospital with poorly differentiated lung squamous cell carcinoma one year after RCC surgery. We exploited molecular technology advances to retrospectively investigate the patient's molecular genetic alterations by whole-exome sequencing. The results revealed a 6p21 amplification in VEGFA and TFEB gene acquisition absent in other RCC subtypes. Clear cell, papillary, chromophobe, TFE3-translocation, eosinophilic solid and cystic RCC were excluded. Strong TFEB and Melan-A protein positivity prompted rediagnosis as TFEB/6p21/VEGFA-amplified RCC as per 2022 WHO classification. TMB-L (low tumor mutational load), CCND3 gene acquisition and MRE11A and ATM gene deletion mutations indicated sensitivity to PD-1/PD-L1 inhibitor combinations and the FDA-approved targeted agents Niraparib (Grade C), Olaparib (Grade C), Rucaparib (Grade C) and Talazoparib (Class C). GO (Gene Ontology) and KEGG enrichment analyses revealed major mutations and abnormal CNVs in genes involved in biological processes such as the TGF-ß, Hippo, E-cadherin, lysosomal biogenesis and autophagy signaling pathways, biofilm synthesis cell adhesion substance metabolism regulation and others. We compared TFEB/6p21/VEGFA-amplified with TFEB-translocated RCC; significant differences in disease onset age, histological patterns, pathological stages, clinical prognoses, and genetic characteristics were revealed. CONCLUSION: We clarified the patient's challenging diagnosis and discussed the clinicopathology, immunophenotype, differential diagnosis, and molecular genetic information regarding TFEB/6p21/VEGFA-amplified RCC via exome analysis and a literature review.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Carcinoma, Renal Cell , Exome Sequencing , Kidney Neoplasms , Humans , Male , Middle Aged , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Biomarkers, Tumor/genetics
2.
Sci Rep ; 14(1): 37, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167455

ABSTRACT

Diagnosing low-grade and high-grade endometrial stromal sarcoma (LG-ESS and HG-ESS) is a challenge. This study aimed to identify biomarkers. 22 ESS cases were analyzed using Illumina microarrays. Differentially expressed genes (DEGs) were identified via Limma. DEGs were analyzed with String and Cytoscape. Core genes were enriched with GO and KEGG, their pan-cancer implications and immune aspects were studied. 413 DEGs were found by exome sequencing, 2174 by GSE85383 microarray. 36 common genes were identified by Venn analysis, and 10 core genes including RBFOX1, PCDH7, FAT1 were selected. Core gene GO enrichment included cell adhesion, T cell proliferation, and KEGG focused on related pathways. Expression was evaluated across 34 cancers, identifying immune DEGs IGF1 and AVPR1A. Identifying the DEGs not only helps improve our understanding of LG-ESS, HG-ESS but also promises to be potential biomarkers for differential diagnosis between LG-ESS and HG-ESS and new therapeutic targets.


Subject(s)
Endometrial Neoplasms , Sarcoma, Endometrial Stromal , Female , Humans , Sarcoma, Endometrial Stromal/diagnosis , Sarcoma, Endometrial Stromal/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Computational Biology
3.
Diagn Pathol ; 18(1): 35, 2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36871023

ABSTRACT

BACKGROUND: Myeloid Sarcoma with monocytic differentiation is rare and quite likely is missed by surgical pathologists. However it is frequently misdiagnosed because of its non-specific imaging and histological pattern. CASE PRESENTATION: We report the case of a 64-year-old woman with gastric primary myeloid sarcoma with monocytic differentiatio. Upper endoscopy revealed a neoplastic growth at the junction of the lesser curvature and gastric antrum. Except for a slightly increased peripheral monocyte count, no abnormalities were found on hematological and bone-marrow examination. Gastroscopic biopsy showed poorly differentiated atypical large cells with visible nucleoli and nuclear fission. Immunohistochemistry showed positive CD34, CD4, CD43, and CD56 expression, and weakly positive lysozyme expression. Immune markers for poorly differentiated adenocarcinoma, malignant melanoma, and lymphohematopoietic-system tumors were negative. The final diagnosis was myeloid sarcoma with monocytic differentiation. Chemotherapy did not shrink the tumor, so, radical surgery was performed. Although the tumor morphology did not change postoperatively, the immunophenotype did. CD68 and lysozyme expression (tumor tissue markers) changed from negative and weakly positive to strongly positive, AE1/3 expression (epithelial marker) changed from negative to positive, and CD34, CD4, CD43, and CD56 expression (common in naive hematopoietic cell-derived tumors) was greatly attenuated. Exome sequencing revealed missense mutations in FLT3 and PTPRB, which are associated with myeloid sarcoma, and in TP53, CD44, CD19, LTK, NOTCH2, and CNTN2, which are associated with lymphohematopoietic tumors and poorly differentiated cancers. CONCLUSION: We diagnosed myeloid sarcoma with monocytic differentiation after excluding poorly differentiated adenocarcinoma, common lymphohematopoietic-system tumors, epithelioid sarcoma, and malignant melanoma. We identified that the immunophenotypic of patient had alterations after chemotherapy, and FLT3 gene mutations. We hope that the above results will improve our understanding of this rare tumor.


Subject(s)
Adenocarcinoma , Hematologic Neoplasms , Melanoma , Sarcoma, Myeloid , Female , Humans , Middle Aged , Muramidase , Exome Sequencing , Cell Differentiation , Melanoma, Cutaneous Malignant
5.
Int J Nanomedicine ; 16: 2173-2186, 2021.
Article in English | MEDLINE | ID: mdl-33758505

ABSTRACT

BACKGROUND: Colon cancer is a top lethal cancer in man and women worldwide and drug resistance is the major cause of cancer-related death. Combinational therapy and drug delivery with nanoparticles have been shown to effectively overcome drug resistance in many cancers. We previously reported that nanoemulsion (NE) loaded paclitaxel (PTX) and BEZ235 could synergistically inhibit colon cancer cell growth. PURPOSE: To investigate whether NE loaded PTX and BEZ235 can overcome drug resistance and synergistically inhibit drug-resistant colon cancer cell growth in vitro and in vivo. METHODS: The in vitro treatment effect on cell viability was assayed using CCK8 kit, cell morphological change was detected by ß-tubulin immunofluorescence staining, drug resistance-related proteins were analyzed by Western blotting, and in vivo tumor growth test was performed in nude mice xeno-transplanted with 2 drug-resistant colon cancer cell lines HCT116-LOHP and HT29-DDP. RESULTS: Both cell lines were sensitive to PTX but relatively insensitive to BEZ235. PTX combined with BEZ235 synergistically inhibited the proliferation of both cell lines. Nanoemulsion loaded PTX (NE-PTX) reduced the IC50 of PTX to approximately 2/5 of free PTX, indicating a high inhibitory efficacy of NE-PTX. When NE-PTX combined with a low concentration of BEZ235 (50 nM), the IC50 was decreased to approximately 2/3 of free PTX. Moreover, NE-PTX+BEZ235 treatment increased apoptosis, decreased Pgp and ABCC1 expression, and reduced tumor weights compared to the single drug treatment and the control group. These results suggest that nanoemulsion loaded PTX+BEZ235 can overcome drug resistance and improve the inhibitory effect on cancer cell proliferation and tumor growth. CONCLUSION: Our study thus provides a possible new approach to treat colon cancer patients with drug resistance.


Subject(s)
Apoptosis , Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm , Imidazoles/therapeutic use , Nanoparticles/chemistry , Paclitaxel/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Colonic Neoplasms/pathology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Emulsions/chemistry , Female , Humans , Imidazoles/pharmacology , Inhibitory Concentration 50 , Mice, Inbred BALB C , Mice, Nude , Neoplasm Proteins/metabolism , Paclitaxel/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Quinolines/pharmacology , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...