Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Hear Res ; 446: 109006, 2024 May.
Article in English | MEDLINE | ID: mdl-38583350

ABSTRACT

Hair cells in the cochlear sensory epithelia serve as mechanosensory receptors, converting sound into neuronal signals. The basal sensory epithelia are responsible for transducing high-frequency sounds, while the apex handles low-frequency sounds. Age-related hearing loss predominantly affects hearing at high frequencies and is indicative of damage to the basal sensory epithelia. However, the precise mechanism underlying this site-selective injury remains unclear. In this study, we employed a microscale proteomics approach to examine and compare protein expression in different regions of the cochlear sensory epithelia (upper half and lower half) in 1.5-month-old (normal hearing) and 6-month-old (severe high-frequency hearing loss without hair cell loss) C57BL/6J mice. A total of 2,386 proteins were detected, and no significant differences in protein expression were detected in the upper half of the cochlear sensory epithelia between the two age groups. The expression of 20 proteins in the lower half of the cochlear sensory epithelia significantly differed between the two age groups (e.g., MATN1, MATN4, and AQP1). Moreover, there were 311 and 226 differentially expressed proteins between the upper and lower halves of the cochlear sensory epithelia in 1.5-month-old and 6-month-old mice, respectively. The expression levels of selected proteins were validated by Western blotting. These findings suggest that the spatial differences in protein expression within the cochlear sensory epithelia may play a role in determining the susceptibility of cells at different sites of the cochlea to age-related damage.


Subject(s)
Cochlea , Mice, Inbred C57BL , Presbycusis , Proteomics , Animals , Cochlea/metabolism , Cochlea/pathology , Presbycusis/metabolism , Presbycusis/pathology , Presbycusis/physiopathology , Presbycusis/genetics , Age Factors , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Aging/metabolism , Aging/pathology , Disease Models, Animal , Hearing , Epithelium/metabolism , Male , Mice
2.
Anticancer Agents Med Chem ; 23(20): 2217-2224, 2023.
Article in English | MEDLINE | ID: mdl-37888819

ABSTRACT

BACKGROUND: Neuroblastoma (NB) remains associated with a low overall survival rate over the long term. Abnormal activation of the Hedgehog (HH) signaling pathway can activate the transcription of various downstream target genes that promote NB. Both arsenic trioxide (ATO) and itraconazole (ITRA) can inhibit tumor growth. OBJECTIVE: To determine whether ATO combined with ITRA can be used to treat NB with HH pathway activation, we examined the effects of ATO and ITRA monotherapy or combined inhibition of the HH pathway in NB. METHODS: Analysis of CCK8 and flow cytometry showed cell inhibition and cell cycle, respectively. Real-time PCR analysis was conducted to assess the mRNA expression of HH pathway. RESULTS: We revealed that as concentrations of ATO and ITRA increased, the killing effects of both agents on SK-N-BE(2) cells became more apparent. During G2/M, the cell cycle was largely arrested by ATO alone and combined with ITRA, and in the G0/G1 phase by ITRA alone. In the HH pathway, ATO inhibited the transcription of the SHH, PTCH1, SMO and GLI2 genes, however, ITRA did not. Instead of showing synergistic effects in a combined mode, ITRA decreased ATO inhibitory effects. CONCLUSION: We showed that ATO is an important inhibitor of HH pathway but ITRA can weaken the inhibitory effect of ATO. This study provides an experimental evidence for the clinical use of ATO and ITRA in the treatment of NB with HH pathway activation in cytology.


Subject(s)
Arsenicals , Neuroblastoma , Humans , Arsenic Trioxide/pharmacology , Hedgehog Proteins/metabolism , Itraconazole/pharmacology , Oxides/pharmacology , Oxides/therapeutic use , Arsenicals/pharmacology , Arsenicals/therapeutic use , Cell Line, Tumor , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Apoptosis
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(6): 606-611, 2023 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-37382130

ABSTRACT

OBJECTIVES: To study the efficacy and safety of repeated application of rituximab (RTX) at a low dose (200 mg/m2) versus the recommended dose (375 mg/m2) for remission maintenance in frequently relapsing nephrotic syndrome (FRNS) or steroid-dependent nephrotic syndrome (SDNS). METHODS: A randomized controlled trial was conducted for 29 children with FRNS/SDNS who received systemic treatment in the Department of Nephrology, Anhui Provincial Children's Hospital, from September 2020 to December 2021. These children were divided into a recommended dose group (n=14) and a low dose group (n=15) using a random number table. The two groups were compared in terms of general characteristics, changes in CD19 expression after RTX treatment, number of relapses, glucocorticoid dose, adverse reactions of RTX, and hospital costs. RESULTS: After RTX treatment, both the low dose group and the recommended dose group achieved B-lymphocyte depletion and had significant reductions in the number of relapses and glucocorticoid dose (P<0.05). The low dose group had a comparable clinical effect to the recommended dose group after RTX treatment (P>0.05), and the low dose group had a significant reduction in hospital costs for the second, third, and fourth times of hospitalization (P<0.05). There were no serious adverse reactions in either group during RTX treatment and late follow-up, and there was no significant difference in adverse reactions between the two groups (P>0.05). CONCLUSIONS: Repeated RTX treatment at a low dose has comparable clinical efficacy and safety to that at the recommended dose and can significantly reduce the number of FRNS/SDNS relapses and the amount of glucocorticoids used, with little adverse effect throughout the treatment cycle. Therefore, it holds promise for clinical application.


Subject(s)
Nephrotic Syndrome , Humans , Child , Nephrotic Syndrome/drug therapy , Rituximab/adverse effects , Glucocorticoids/adverse effects , Prospective Studies , Adaptor Proteins, Signal Transducing
5.
Comput Intell Neurosci ; 2022: 2484850, 2022.
Article in English | MEDLINE | ID: mdl-35602626

ABSTRACT

With the emergence of the Industry 4.0 era in China, more refined methods are being proposed for healthy living requirements for human settlements. Since the rural human settlements in China are relatively backward, this study aimed to investigate the influencing factors of human health. First, through field surveys and questionnaires conducted with villagers in Xiangxi's traditional villages in Hunan Province, we analyzed the factors affecting human health qualitatively and quantitatively using the SPSS software. We identified three main dimensions affecting human health in rural human settlements including human behavioral activities, physical environment, and natural environment. Then, we used correlation analysis and multiple linear regression analysis methods to analyze the correlation between environmental factors and human health. The results showed that human activities, building physical environment, and natural environment are significantly correlated with human health. Among them, human behavior has the strongest correlation with health. This research contributes to creating healthy human settlements and guiding the creation of a healthy environment in rural China.


Subject(s)
Environment , Rural Population , China , Correlation of Data , Humans
6.
Mol Biol Rep ; 49(7): 6573-6580, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35598199

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common extracranial tumor in central nervous system threatening children's health with limited therapeutic options. Arsenic trioxide (ATO) has been identified the cytotoxicity in NB cells but the potential mechanism remains unclear. In this study, we attempted to obtain some insight into the mechanisms of cell death induced by ATO in NB cells. METHODS AND RESULTS: Proteomic analyses found that ATO can affect the signaling pathway associated with ferroptosis, including the upregulation of iron absorption (FTL, FTH1, HO-1), ferritinophagy (LC3, P62, ATG7, NCOA4) and modifier of glutathione synthesis (GCLM); downregulation of glutamine synthetase (GS) and GPX4, which was the critical inhibitor of ferroptosis. Western blot analysis revealing GPX4 expression in SK-N-BE (2) cells decreased after treatment with ATO (7.3 µM), resulting in a loss of GPX4 activity. Furthermore, Ferroptosis inhibitor ferrostatin-1 partially blocked ATO-induced cell death. CONCLUSIONS: Our study revealed that ATO may induce ferroptosis in neuroblastoma cell SK-N-BE (2) by facilitating the downregulation of GPX4, ultimately resulting in iron-dependent oxidative death.


Subject(s)
Ferroptosis , Neuroblastoma , Apoptosis , Arsenic Trioxide/pharmacology , Child , Humans , Iron/metabolism , Neuroblastoma/drug therapy , Proteomics
7.
Bioinformatics ; 38(5): 1470-1472, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34904638

ABSTRACT

SUMMARY: We have implemented the pypgatk package and the pgdb workflow to create proteogenomics databases based on ENSEMBL resources. The tools allow the generation of protein sequences from novel protein-coding transcripts by performing a three-frame translation of pseudogenes, lncRNAs and other non-canonical transcripts, such as those produced by alternative splicing events. It also includes exonic out-of-frame translation from otherwise canonical protein-coding mRNAs. Moreover, the tool enables the generation of variant protein sequences from multiple sources of genomic variants including COSMIC, cBioportal, gnomAD and mutations detected from sequencing of patient samples. pypgatk and pgdb provide multiple functionalities for database handling including optimized target/decoy generation by the algorithm DecoyPyrat. Finally, we have reanalyzed six public datasets in PRIDE by generating cell-type specific databases for 65 cell lines using the pypgatk and pgdb workflow, revealing a wealth of non-canonical or cryptic peptides amounting to >5% of the total number of peptides identified. AVAILABILITY AND IMPLEMENTATION: The software is freely available. pypgatk: https://github.com/bigbio/py-pgatk/ and pgdb: https://nf-co.re/pgdb. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteogenomics , Humans , Peptides/genetics , Software , Algorithms , Proteins
8.
Free Radic Biol Med ; 179: 229-241, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34801666

ABSTRACT

Nitric oxide (NO) is critically involved in the regulation of a wide variety of physiological and pathophysiological processes. However, the role of NO in the pathogenesis of noise-induced hearing loss (NIHL) is complex and remains controversial. Here we reported that treatment of CBA/J mice with l-arginine, a physiological precursor of NO, significantly reduced noise-induced reactive oxygen species accumulation in outer hair cells (OHCs), attenuated noise-induced loss of OHCs and NIHL consequently. Conversely, pharmacological inhibition of endothelial nitric oxide synthase exacerbated noise-induced loss of OHCs and aggravated NIHL. In HEI-OC1 cells, NO also showed substantial protection against H2O2-induced oxidative stress and cytotoxicity. Mechanistically, NO increased S-nitrosylation of pyruvate kinase M2 (PKM2) and inhibited its activity, which thus diverted glucose metabolic flux from glycolysis into the pentose phosphate pathway to increase production of reducing equivalents (NADPH and GSH) and eventually prevented H2O2-induced oxidative damage. These findings open new avenues for protection of cochlear hair cells from oxidative stress and prevention of NIHL through NO modulation of PKM2 and glucose metabolism reprogramming.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Cochlea , Glucose/toxicity , Hair Cells, Auditory, Outer , Hydrogen Peroxide/toxicity , Mice , Mice, Inbred CBA , Nitric Oxide
9.
Commun Biol ; 4(1): 496, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888849

ABSTRACT

Neoantigen-based immunotherapy has yielded promising results in clinical trials. However, it is limited to tumor-specific mutations, and is often tailored to individual patients. Identifying suitable tumor-specific antigens is still a major challenge. Previous proteogenomics studies have identified peptides encoded by predicted non-coding sequences in human genome. To investigate whether tumors express specific peptides encoded by non-coding genes, we analyzed published proteomics data from five cancer types including 933 tumor samples and 275 matched normal samples and compared these to data from 31 different healthy human tissues. Our results reveal that many predicted non-coding genes such as DGCR9 and RHOXF1P3 encode peptides that are overexpressed in tumors compared to normal controls. Furthermore, from the non-coding genes-encoded peptides specifically detected in cancers, we predict a large number of "dark antigens" (neoantigens from non-coding genomic regions), which may provide an alternative source of neoantigens beyond standard tumor specific mutations.


Subject(s)
Antigens, Neoplasm/immunology , Neoplasms/genetics , Peptides/genetics , Proteome/genetics , Antigens, Neoplasm/genetics , Humans , Peptides/metabolism , Proteogenomics
10.
ACS Omega ; 5(21): 12110-12118, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32548390

ABSTRACT

Regulating the states of hydrogen bonds in ionic liquids (ILs) is an effective way to improve their catalytic performance. In this paper, disulfonic-functionalized acidic ionic liquids (DSFAILs) were synthesized successfully, including novel SO3H-functionalized binuclear IL (bis[3-(CH2)3SO3H-1-(CH2)2-Im][HSO4]2). For the biodiesel synthesis, compared with the traditional ILs catalysts, DSFAILs bis[(3-(CH2)3SO3H-1-(CH2)2-Im][HSO4]2, [Im(N (CH2)3SO3H)2][HSO4]) had higher catalytic activity even under mild reaction conditions. Using the density functional theory (DFT) method, the role of hydrogen bonds in different SO3H-functionalized acidic ionic liquids (SFAILs) was explored. The forms of hydrogen bonds existing in different ILs directly determine their acidity. It suggested that the forming status of the active sites (hydrogen bonds) were diverse in different SFAILs. Also, deep ionization of the hydrogen atoms from the cation-anion strong interaction could increase the acidity and catalytic performance of SFAILs. From this, the structure-activity relationship between the SFAILs structures and the catalytic activity of methyl oleate synthesis was proposed. Besides, the experimental results also showed that bis[3-(CH2)3SO3H-1-(CH2)2-Im][HSO4]2 catalyst had a high catalytic activity to obtain methyl oleate and the catalyst could be separated easily owing to its larger molecular weight. However, [Im(N(CH2)3SO3H)2][HSO4] had a stronger acidity and a lower steric hindrance and thus a higher catalytic activity and was the optimal catalyst for the methyl oleate synthesis. In the presence of a small amount of catalyst (6 wt %) and at low reaction temperature (353 K), the methyl oleate yield could reach up to 93%. After six recycles of the catalyst, the methyl oleate yield remained at 90%.

11.
Mol Cell Proteomics ; 19(6): 1047-1057, 2020 06.
Article in English | MEDLINE | ID: mdl-32205417

ABSTRACT

Quantitative proteomics by mass spectrometry is widely used in biomarker research and basic biology research for investigation of phenotype level cellular events. Despite the wide application, the methodology for statistical analysis of differentially expressed proteins has not been unified. Various methods such as t test, linear model and mixed effect models are used to define changes in proteomics experiments. However, none of these methods consider the specific structure of MS-data. Choices between methods, often originally developed for other types of data, are based on compromises between features such as statistical power, general applicability and user friendliness. Furthermore, whether to include proteins identified with one peptide in statistical analysis of differential protein expression varies between studies. Here we present DEqMS, a robust statistical method developed specifically for differential protein expression analysis in mass spectrometry data. In all data sets investigated there is a clear dependence of variance on the number of PSMs or peptides used for protein quantification. DEqMS takes this feature into account when assessing differential protein expression. This allows for a more accurate data-dependent estimation of protein variance and inclusion of single peptide identifications without increasing false discoveries. The method was tested in several data sets including E. coli proteome spike-in data, using both label-free and TMT-labeled quantification. Compared with previous statistical methods used in quantitative proteomics, DEqMS showed consistently better accuracy in detecting altered protein levels compared with other statistical methods in both label-free and labeled quantitative proteomics data. DEqMS is available as an R package in Bioconductor.


Subject(s)
Peptides/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Algorithms , Biomarkers/metabolism , Cell Line , Chromatography, Liquid , ErbB Receptors/antagonists & inhibitors , Escherichia coli/metabolism , Gefitinib/pharmacology , Humans , Isoelectric Focusing , MCF-7 Cells , Proteome/metabolism , Reproducibility of Results
12.
Front Oncol ; 10: 602763, 2020.
Article in English | MEDLINE | ID: mdl-33738245

ABSTRACT

Human stem cell-derived extracellular vesicles (EV) provide many advantages over cell-based therapies for the treatment of functionally compromised tissue beds and organ sites. Here we sought to determine whether human embryonic stem cell (hESC)-derived EV could resolve in part, the adverse late normal tissue complications associated with exposure of the lung to ionizing radiation. The hESC-derived EV were systemically administered to the mice via the retro-orbital sinus to explore the potential therapeutic benefits following exposure to high thoracic doses of radiation (14 Gy). Data demonstrated that hESC-derived EV treatment significantly improved overall survival of the irradiated cohorts (P < 0.001). Increased survival was also associated with significant reductions in lung fibrosis as quantified by CBCT imaging (P < 0.01, 2 weeks post-irradiation). Qualitative histological analyses revealed reduced indications of radiation induced pulmonary injury in animals treated with EV. EV were then subjected to a rigorous proteomic analysis to ascertain the potential bioactive cargo that may prove beneficial in ameliorating radiation-induced normal tissue toxicities in the lung. Proteomics validated several consensus exosome markers (e.g., CD68) and identified major classes of proteins involved in nuclear pore complexes, epigenetics, cell cycle, growth and proliferation, DNA repair, antioxidant function, and cellular metabolism (TCA cycle and oxidative phosphorylation, OXYPHOS). Interestingly, EV were also found to contain mitochondrial components (mtDNA, OXYPHOS protein subunits), which may contribute to the metabolic reprograming and recovery of radiation-injured pulmonary tissue. To evaluate the safety of EV treatments in the context of the radiotherapeutic management of tumors, mice harboring TC1 tumor xenografts were subjected to the same EV treatments shown to forestall lung fibrosis. Data indicated that over the course of one month, no change in the growth of flank tumors between treated and control cohorts was observed. In conclusion, present findings demonstrate that systemic delivery of hESC-derived EV could ameliorate radiation-induced normal tissue complications in the lung, through a variety of potential mechanisms based on EV cargo analysis.

13.
Nat Commun ; 10(1): 1600, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962452

ABSTRACT

In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Protein Interaction Maps , Proteome/metabolism , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/immunology , DNA Copy Number Variations , Datasets as Topic , Female , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Proteogenomics/methods , Proteome/genetics , Proteome/immunology , RNA, Messenger/metabolism
14.
Elife ; 82019 04 08.
Article in English | MEDLINE | ID: mdl-30958262

ABSTRACT

Here, we present a method for in-depth human plasma proteome analysis based on high-resolution isoelectric focusing HiRIEF LC-MS/MS, demonstrating high proteome coverage, reproducibility and the potential for liquid biopsy protein profiling. By integrating genomic sequence information to the MS-based plasma proteome analysis, we enable detection of single amino acid variants and for the first time demonstrate transfer of multiple protein variants between mother and fetus across the placenta. We further show that our method has the ability to detect both low abundance tissue-annotated proteins and phosphorylated proteins in plasma, as well as quantitate differences in plasma proteomes between the mother and the newborn as well as changes related to pregnancy.


Subject(s)
Blood Proteins/analysis , Maternal-Fetal Exchange , Plasma/chemistry , Proteome/analysis , Chromatography, Liquid , Female , Healthy Volunteers , Humans , Isoelectric Focusing , Male , Pregnancy , Protein Transport , Tandem Mass Spectrometry
15.
Mol Cell ; 73(1): 166-182.e7, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30609389

ABSTRACT

Subcellular localization is a main determinant of protein function; however, a global view of cellular proteome organization remains relatively unexplored. We have developed a robust mass spectrometry-based analysis pipeline to generate a proteome-wide view of subcellular localization for proteins mapping to 12,418 individual genes across five cell lines. Based on more than 83,000 unique classifications and correlation profiling, we investigate the effect of alternative splicing and protein domains on localization, complex member co-localization, cell-type-specific localization, as well as protein relocalization after growth factor inhibition. Our analysis provides information about the cellular architecture and complexity of the spatial organization of the proteome; we show that the majority of proteins have a single main subcellular location, that alternative splicing rarely affects subcellular location, and that cell types are best distinguished by expression of proteins exposed to the surrounding environment. The resource is freely accessible via www.subcellbarcode.org.


Subject(s)
Chromatography, Liquid , Mass Spectrometry , Proteins/metabolism , Proteome , Proteomics/methods , Subcellular Fractions/metabolism , Biomarkers/metabolism , Cell Fractionation , Computational Biology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Gefitinib/pharmacology , Humans , Isoelectric Focusing , MCF-7 Cells , Protein Kinase Inhibitors/pharmacology , Protein Transport , Proteins/antagonists & inhibitors , Proteins/classification , Proteins/genetics , Reproducibility of Results , Subcellular Fractions/classification , Subcellular Fractions/drug effects
16.
Sci Rep ; 8(1): 8521, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29867157

ABSTRACT

Contact property is now becoming to be a key factor for achieving high performance and high reliability in GaN-based III-V semiconductor devices. Energetic ion sputter, as an effective interface probe, is widely used to profile the metal/GaN contacts for interfacial analysis and process optimization. However, the details of ion-induced interfacial reaction, as well as the formation of sputter by-products at the interfaces are still unclear. Here by combining state-of-the-art Ar+ ion sputter with in-situ X-ray photoelectron spectroscopy (XPS) and ex-situ high resolution transmission electron microscopy (HRTEM), we have observed clearly not only the ion-induced chemical state changes at interface, but also the by-products at the prototypical Ti/GaN system. For the first time, we identified the formation of a metallic Ga layer at the GaOx/GaN interface. At the Ti/GaOx interface, TiCx components were also detected due to the reaction between metal Ti and surface-adsorbed C species. Our study reveals that the corresponding core level binding energy and peak intensity obtained from ion sputter depth profile should be treated with much caution, since they will be changed due to ion-induced interface reactions and formation of by-products during ion bombardment.

17.
Nat Commun ; 9(1): 1852, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29739940

ABSTRACT

In the original version of this Article, extraneous text not belonging to the Article was accidentally appended to the results section. This error has now been corrected in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 9(1): 903, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500430

ABSTRACT

Proteogenomics enable the discovery of novel peptides (from unannotated genomic protein-coding loci) and single amino acid variant peptides (derived from single-nucleotide polymorphisms and mutations). Increasing the reliability of these identifications is crucial to ensure their usefulness for genome annotation and potential application as neoantigens in cancer immunotherapy. We here present integrated proteogenomics analysis workflow (IPAW), which combines peptide discovery, curation, and validation. IPAW includes the SpectrumAI tool for automated inspection of MS/MS spectra, eliminating false identifications of single-residue substitution peptides. We employ IPAW to analyze two proteomics data sets acquired from A431 cells and five normal human tissues using extended (pH range, 3-10) high-resolution isoelectric focusing (HiRIEF) pre-fractionation and TMT-based peptide quantitation. The IPAW results provide evidence for the translation of pseudogenes, lncRNAs, short ORFs, alternative ORFs, N-terminal extensions, and intronic sequences. Moreover, our quantitative analysis indicates that protein production from certain pseudogenes and lncRNAs is tissue specific.


Subject(s)
Genome, Human , Open Reading Frames/genetics , Proteogenomics/methods , Workflow , Amino Acid Sequence , Amino Acid Substitution , Cell Line , Chromatography, Liquid , Genetic Loci , Humans , Isoelectric Focusing , Mass Spectrometry , Peptides/chemistry , Peptides/genetics , Proteome/metabolism
19.
Sci Rep ; 8(1): 498, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323256

ABSTRACT

Platelet activation triggers thrombus formation in physiological and pathological conditions, such as acute coronary syndromes. Current therapies still fail to prevent thrombotic events in numerous patients, indicating that the mechanisms modulating platelet response during activation need to be clarified. The evidence that platelets are capable of de novo protein synthesis in response to stimuli raised the issue of how megakaryocyte-derived mRNAs are regulated in these anucleate cell fragments. Proteogenomics was applied here to investigate this phenomeon in platelets activated in vitro with Collagen or Thrombin Receptor Activating Peptide. Combining proteomics and transcriptomics allowed in depth platelet proteome characterization, revealing a significant effect of either stimulus on proteome composition. In silico analysis revealed the presence of resident immature RNAs in resting platelets, characterized by retained introns, while unbiased proteogenomics correlated intron removal by RNA splicing with changes on proteome composition upon activation. This allowed identification of a set of transcripts undergoing maturation by intron removal during activation and resulting in accumulation of the corresponding peptides at exon-exon junctions. These results indicate that RNA splicing events occur in platelets during activation and that maturation of specific pre-mRNAs is part of the activation cascade, contributing to a dynamic fine-tuning of the transcriptome.


Subject(s)
Blood Platelets/metabolism , Proteome/metabolism , RNA Precursors/metabolism , RNA Splicing , Chromatography, High Pressure Liquid , Exons , Genomics , Humans , Male , Platelet Activation , Protein Biosynthesis , Proteome/analysis , Proteomics , RNA, Small Nuclear/metabolism , Spectrometry, Mass, Electrospray Ionization , Young Adult
20.
Nucleic Acids Res ; 45(5): 2629-2643, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28100699

ABSTRACT

Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.


Subject(s)
Fungal Proteins/genetics , Genome, Fungal , Malassezia/genetics , Molecular Sequence Annotation/methods , Proteogenomics/methods , Genes, Fungal , Genome, Mitochondrial , Peptides/genetics , Protein Domains , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...