Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967891

ABSTRACT

OBJECTIVE: Obesity-induced kidney injury contributes to the development of diabetic nephropathy (DN). Here, we identified the functions of ubiquitin-specific peptidase 19 (USP19) in HK-2 cells exposed to a combination of high glucose (HG) and free fatty acid (FFA) and determined its association with TGF-beta-activated kinase 1 (TAK1). METHODS: HK-2 cells were exposed to a combination of HG and FFA. USP19 mRNA expression was detected by quantitative RT-PCR (qRT-PCR), and protein analysis was performed by immunoblotting (IB). Cell growth was assessed by Cell Counting Kit-8 (CCK-8) viability and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays. Cell cycle distribution and apoptosis were detected by flow cytometry. The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation (Co-IP) assays and IB. RESULTS: In HG+FFA-challenged HK-2 cells, USP19 was highly expressed. USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells. Moreover, USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1 (PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species (ROS) generation in HK-2 cells. Mechanistically, USP19 stabilized the TAK1 protein through deubiquitination. Importantly, increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells. CONCLUSION: The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1, providing a potential therapeutic strategy for combating DN.

2.
Clin Chim Acta ; 554: 117785, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38228224

ABSTRACT

BACKGROUND: The study aimed to investigate the diagnostic value of lupus-related pattern recognition receptors (PRRs) genes in peripheral blood mononuclear cells (PBMCs) and monocytes (MONs) for lupus nephritis (LN). METHODS: PBMCs were isolated from a cohort with 37 LN patients and 39 healthy controls (HCs), and MONs were derived from another cohort with 70 LN patients and 66 HCs. Q-PCR was used to measure the mRNA levels of CGAS, IFNB1, AIM2, IL1Β, NLRC4, NLRP3, NLRP12 and ZBP1 in the PBMCs and MONs. The Mann-Whitney U test was used to compare the data in LN patients and HCs. Eleven GEO datasets of SLE/LN were used to perform differentially expressed genes (DEGs) analysis to these PRR genes. Receiver operating characteristic (ROC) curve analysis was employed to assess the performance of individual genes or the disease prediction model established by combining multiple genes in LN diagnosis. Spearman correlation method was done to analyze the correlation between these PRRs and other clinical characteristics. RESULTS: The mRNA levels of five genes (AIM2, NLRC4, IL1B, NLRP12 and ZBP1) in PBMCs, and seven genes (CGAS, IFNB1, AIM2, IL1B, NLRP3, NLRP12 and ZBP1) in MONs of LN patients were significantly higher than those of HCs (P < 0.05). DEGs analysis based on the GEO datasets showed that ZBP1, AIM2 and IL1B were significantly increased in several datasets. The ROC curve analysis indicated that the area under curve (AUC) of the LN prediction models derived from PBMCs or MONs were 0.82 or 0.91 respectively. In addition, the expression levels of these PRRs were correlated with other clinical features in LN patients, including Anti-Sm, ESR, serum Cr, and C3. CONCLUSION: Our study suggests that these lupus-related PRRs might be served as potential biomarkers of LN.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Lupus Nephritis/diagnosis , Lupus Nephritis/genetics , Lupus Nephritis/metabolism , Leukocytes, Mononuclear/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Monocytes/metabolism , Biomarkers , RNA, Messenger/genetics , Nucleotidyltransferases , ROC Curve
3.
Australas J Dermatol ; 63(1): e71-e74, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34463968

ABSTRACT

Pembrolizumab is a humanised therapeutic antibody against the PD-1 receptor. It has been used in various advanced cancer immunotherapies. Here, we report an extremely rare case of a 32-year-old man who developed Stevens-Johnson syndrome (SJS) with porokeratosis simultaneously during pembrolizumab treatment for primary hepatocellular carcinoma (T3N1M1).


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Porokeratosis/chemically induced , Stevens-Johnson Syndrome/etiology , Adult , Carcinoma, Hepatocellular/drug therapy , Humans , Liver Neoplasms/drug therapy , Male
4.
Biochem Biophys Res Commun ; 508(1): 169-176, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30471852

ABSTRACT

Lipopolysaccharide (LPS) induces macrophage/monocyte activation and pro-inflammatory cytokines production by activating Toll-like receptor 4 (TLR-4) signaling. Rab GTPase 21 (Rab21) is a member of the Rab GTPase subfamily. In the present study, we show that LPS induced TLR4 and Rab21 association and endosomal translocation in murine bone marrow-derived macrophages (BMDMs) and primary human peripheral blood mononuclear cells (PBMCs). In BMDMs, shRNA-mediated stable knockdown of Rab21 inhibited LPS-induced expression and production of pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α). Conversely, forced overexpression of Rab21 by an adenovirus construct potentiated LPS-induced IL-1ß, IL-6 and TNF-α production in BMDMs. Further studies show that LPS-induced TLR4 endosomal traffic and downstream c-Jun and NFκB (nuclear factor-kappa B) activation were significantly inhibited by Rab21 shRNA, but intensified with Rab21 overexpression in BMDMs. Finally, in the primary human PBMCs, siRNA-induced knockdown of Rab21 significantly inhibited LPS-induced IL-1ß, IL-6 and TNF-α production. Taken together, we suggest that Rab21 regulates LPS-induced pro-inflammatory responses by promoting TLR4 endosomal traffic and downstream signaling activation.


Subject(s)
Inflammation/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Monocytes/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Humans , Lipopolysaccharides/antagonists & inhibitors , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Monocytes/metabolism , RNA, Small Interfering/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , rab GTP-Binding Proteins/antagonists & inhibitors , rab GTP-Binding Proteins/genetics
5.
J Pharm Pharmacol ; 71(3): 417-428, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30537209

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the neuroprotective effects of SalB on high glucose (HG)-induced excessive autophagy and apoptosis in vitro. METHODS: The proliferation and apoptosis of RSC96 cells were determined using the MTT assay and flow cytometry, respectively. Western blot analysis was performed to examine the expression of autophagy and apoptosis-related proteins. RT-PCR and flow cytometry were manipulated to examine the level of Bcl-2. The signals of autophagy markers were detected using immunofluorescence methods. KEY FINDINGS: We found that HG significantly reduced RSC96 cell's proliferation and induced apoptosis. What's more, HG increased the level of autophagy and apoptosis-related proteins. However, these effects were reversed by SalB. In addition, we also found that 3-MA decreased the expression of LC3A/B and Beclin1, while the JNK inhibitor SP600125 reduced the levels of phosphorylated JNK, LC3A/B and Beclin1. CONCLUSIONS: High glucose not only induced apoptosis but also caused autophagic cell death by activating the JNK pathway. These effects prevented by SalB in an opposite manner.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Benzofurans/pharmacology , Diabetic Neuropathies/prevention & control , Peripheral Nervous System Diseases/prevention & control , Animals , Anthracenes/pharmacology , Apoptosis Regulatory Proteins/metabolism , Beclin-1/metabolism , Cell Line , Cell Proliferation/drug effects , Diabetic Neuropathies/metabolism , Glucose/pharmacology , MAP Kinase Signaling System/drug effects , Peripheral Nervous System Diseases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Signal Transduction/drug effects
6.
Acta Pharmacol Sin ; 36(2): 171-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25619395

ABSTRACT

AIM: Rosiglitazone is one of the specific PPARγ agonists showing potential therapeutic effects in asthma. Though PPARγ activation was considered protective in inhibiting airway inflammation and remodeling in asthma, the specific mechanisms are still unclear. This study was aimed to investigate whether heme oxygenase-1 (HO-1) related pathways were involved in rosiglitazone-activated PPARγ signaling in asthma treatment. METHODS: Asthma was induced in mice by multiple exposures to ovalbumin (OVA) in 8 weeks. Prior to every OVA challenge, the mice received rosiglitazone (5 mg/kg, p.o.). After the mice were sacrificed, the bronchoalveolar lavage fluid (BALF), blood samples and lungs were collected for analyses. The activities of HO-1, MMP-2 and MMP-9 in airway tissue were assessed, and the expression of PPARγ, HO-1 and p21 proteins was also examined. RESULTS: Rosiglitazone administration significantly attenuated airway inflammation and remodeling in mice with OVA-induced asthma, which were evidenced by decreased counts of total cells, eosinophils and neutrophils, and decreased levels of IL-5 and IL-13 in BALF, and by decreased airway smooth muscle layer thickness and reduced airway collagen deposition. Furthermore, rosiglitazone administration significantly increased PPARγ, HO-1 and p21 expression and HO-1 activity, decreased MMP-2 and MMP-9 activities in airway tissue. All the therapeutic effects of rosiglitazone were significantly impaired by co-administration of the HO-1 inhibitor ZnPP. CONCLUSION: Rosiglitazone effectively attenuates airway inflammation and remodeling in OVA-induced asthma of mice by activating PPARγ/HO-1 signaling pathway.


Subject(s)
Asthma/drug therapy , Heme Oxygenase-1/metabolism , Inflammation/drug therapy , Lung/drug effects , Membrane Proteins/metabolism , PPAR gamma/agonists , Thiazolidinediones/pharmacology , Animals , Asthma/metabolism , Disease Models, Animal , Female , Inflammation/metabolism , Lung/metabolism , Mice , Mice, Inbred BALB C , PPAR gamma/metabolism , Rosiglitazone
7.
Ultrason Sonochem ; 26: 81-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25605585

ABSTRACT

Lactic acid has been used as a bio-based green solvent to study the ultrasound-assisted scale-up synthesis. We report here, for the first time, on the novel and scalable process for synthesis of pyrrole derivatives in lactic acid solvent under ultrasonic radiation. Eighteen pyrrole derivatives have been synthesized in lactic acid solvent under ultrasonic radiation and characterized by (1)H NMR, IR, ESI MS. The results show, under ultrasonic radiation, lactic acid solvent can overcome the scale-up challenges and exhibited many advantages, such as bio-based origin, shorter reaction time, lower volatility, higher yields, and ease of isolating the products.


Subject(s)
Green Chemistry Technology/methods , Lactic Acid/chemistry , Pyrroles/chemistry , Pyrroles/chemical synthesis , Solvents/chemistry , Ultrasonic Waves , Chemistry Techniques, Synthetic
8.
Hepatology ; 60(5): 1645-58, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25048396

ABSTRACT

UNLABELLED: Poor prognosis of cancers, including hepatocellular carcinoma (HCC), is mainly associated with metastasis; however, the underlying mechanisms remain poorly understood. This article investigates the role of lysyl oxidase-like 2 (LOXL-2) in the biology of HCC metastasis. First, we showed that HCC metastasis relies on a collagen-modifying enzyme, LOXL2, which was significantly overexpressed in tumorous tissues and sera of HCC patients, indicating that LOXL2 may be a good diagnostic marker for HCC patients. Second, we delineated a complex, interlinked signaling network that involves multiple regulators, including hypoxia, transforming growth factor beta (TGF-ß), and microRNAs (miRNAs), converging to control the expression of LOXL2. We found not only that LOXL2 was regulated by hypoxia/hypoxia-inducible factor 1 alpha (HIF-1α), but also that TGF-ß activated LOXL2 transcription through mothers against decapentaplegic homolog 4 (Smad4), whereas two frequently underexpressed miRNA families, miR-26 and miR-29, cooperatively suppressed LOXL2 transcription through interacting with the 3' untranslated region of LOXL2. Third, we demonstrated the imperative roles of LOXL2 in modifying the extracellular matrix components in the tumor microenvironment and metastatic niche of HCC. LOXL2 promoted intrahepatic metastasis by increasing tissue stiffness, thereby enhancing the cytoskeletal reorganization of HCC cells. Furthermore, LOXL2 facilitated extrahepatic metastasis by enhancing recruitment of bone-marrow-derived cells to the metastatic site. CONCLUSION: These findings integrate the clinical relevance, molecular regulation, and functional implications of LOXL2 in HCC metastasis.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/enzymology , Liver Neoplasms, Experimental/enzymology , Animals , Case-Control Studies , Cell Adhesion , Cell Line, Tumor , Collagen/metabolism , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , Neoplasm Metastasis , Smad4 Protein/metabolism , Tumor Microenvironment
9.
Asian Pac J Cancer Prev ; 14(7): 4033-9, 2013.
Article in English | MEDLINE | ID: mdl-23991948

ABSTRACT

Links between cancer and metabolism have been suggested for a long time but compelling evidence for this hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as a tumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers, a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulated by pharmacological molecules such as metformin in cancer cells. In addition, AMPK plays a central role in the control of cell growth, proliferation and autophagy through the regulation of mTOR activity, which is consistently deregulated in cancer cells. Targeting of AMPK/mTOR is thus an attractive strategy in the development of therapeutic agents against non-small-cell lung cancer (NSCLC). In this review, the LKB1/AMPK/mTOR signaling pathway is described, highlighting its protective role, and opportunities for therapeutic intervention, and clinical trials in NSCLC.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Molecular Targeted Therapy , Protein Kinases/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , AMP-Activated Protein Kinase Kinases , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL