Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Funct Genomics ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267084

ABSTRACT

Numerous methods have been developed to integrate spatial transcriptomics sequencing data with single-cell RNA sequencing (scRNA-seq) data. Continuous development and improvement of these methods offer multiple options for integrating and analyzing scRNA-seq and spatial transcriptomics data based on diverse research inquiries. However, each method has its own advantages, limitations and scope of application. Researchers need to select the most suitable method for their research purposes based on the actual situation. This review article presents a compilation of 19 integration methods sourced from a wide range of available approaches, serving as a comprehensive reference for researchers to select the suitable integration method for their specific research inquiries. By understanding the principles of these methods, we can identify their similarities and differences, comprehend their applicability and potential complementarity, and lay the foundation for future method development and understanding. This review article presents 19 methods that aim to integrate scRNA-seq data and spatial transcriptomics data. The methods are classified into two main groups and described accordingly. The article also emphasizes the incorporation of High Variance Genes in annotating various technologies, aiming to obtain biologically relevant information aligned with the intended purpose.

2.
Math Biosci Eng ; 20(10): 17726-17746, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-38052534

ABSTRACT

The deep integration of edge computing and Artificial Intelligence (AI) in IoT (Internet of Things)-enabled smart cities has given rise to new edge AI paradigms that are more vulnerable to attacks such as data and model poisoning and evasion of attacks. This work proposes an online poisoning attack framework based on the edge AI environment of IoT-enabled smart cities, which takes into account the limited storage space and proposes a rehearsal-based buffer mechanism to manipulate the model by incrementally polluting the sample data stream that arrives at the appropriately sized cache. A maximum-gradient-based sample selection strategy is presented, which converts the operation of traversing historical sample gradients into an online iterative computation method to overcome the problem of periodic overwriting of the sample data cache after training. Additionally, a maximum-loss-based sample pollution strategy is proposed to solve the problem of each poisoning sample being updated only once in basic online attacks, transforming the bi-level optimization problem from offline mode to online mode. Finally, the proposed online gray-box poisoning attack algorithms are implemented and evaluated on edge devices of IoT-enabled smart cities using an online data stream simulated with offline open-grid datasets. The results show that the proposed method outperforms the existing baseline methods in both attack effectiveness and overhead.

3.
Sensors (Basel) ; 23(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177713

ABSTRACT

Data poisoning attack is a well-known attack against machine learning models, where malicious attackers contaminate the training data to manipulate critical models and predictive outcomes by masquerading as terminal devices. As this type of attack can be fatal to the operation of a smart grid, addressing data poisoning is of utmost importance. However, this attack requires solving an expensive two-level optimization problem, which can be challenging to implement in resource-constrained edge environments of the smart grid. To mitigate this issue, it is crucial to enhance efficiency and reduce the costs of the attack. This paper proposes an online data poisoning attack framework based on the online regression task model. The framework achieves the goal of manipulating the model by polluting the sample data stream that arrives at the cache incrementally. Furthermore, a point selection strategy based on sample loss is proposed in this framework. Compared to the traditional random point selection strategy, this strategy makes the attack more targeted, thereby enhancing the attack's efficiency. Additionally, a batch-polluting strategy is proposed in this paper, which synchronously updates the poisoning points based on the direction of gradient ascent. This strategy reduces the number of iterations required for inner optimization and thus reduces the time overhead. Finally, multiple experiments are conducted to compare the proposed method with the baseline method, and the evaluation index of loss over time is proposed to demonstrate the effectiveness of the method. The results show that the proposed method outperforms the existing baseline method in both attack effectiveness and overhead.

4.
Front Genet ; 12: 726670, 2021.
Article in English | MEDLINE | ID: mdl-34858469

ABSTRACT

Cashmere fineness is one of the important factors determining cashmere quality; however, our understanding of the regulation of cashmere fineness at the cellular level is limited. Here, we used single-cell RNA sequencing and computational models to identify 13 skin cell types in Liaoning cashmere goats. We also analyzed the molecular changes in the development process by cell trajectory analysis and revealed the maturation process in the gene expression profile in Liaoning cashmere goats. Weighted gene co-expression network analysis explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and Western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results show different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify and prove the differential expression in the coarse and fine types of Liaoning cashmere goats. Therefore, the CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat SDPCs; our research provides new insights into the mechanism of cashmere growth and fineness regulation by cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...