Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.090
Filter
1.
Cancer Control ; 31: 10732748241271682, 2024.
Article in English | MEDLINE | ID: mdl-39105433

ABSTRACT

BACKGROUND: The effect of neoadjuvant chemotherapy (NACT) in gallbladder cancer (GBC) patients remains controversial. The aim of this study was to assess the impact of NACT on overall survival (OS) and cancer specific survival (CSS) in patients with localized or locoregionally advanced GBC, and to explore possible protective predictors for prognosis. METHODS: Data for patients with localized or locoregionally advanced GBC (i.e., categories cTx-cT4, cN0-2, and cM0) from 2004 to 2020 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Patients in the NACT and non-NACT groups were propensity score matched (PSM) 1:3, and the Kaplan-Meier method and log-rank test were performed to analyze the impact of NACT on OS and CSS. Univariable and multivariable Cox regression models were applied to identify the possible prognostic factors. Subgroup analysis was conducted to identify patients who would benefit from NACT. RESULTS: Of the 2676 cases included, 78 NACT and 234 non-NACT patients remained after PSM. In localized or locoregionally advanced GBC patients, the median OS of the NACT and non-NACT was 31 and 16 months (log-rank P < 0.01), and the median CSS of NACT and non-NACT was 32 and 17 months (log-rank P < 0.01), respectively. Longer median OS (31 vs 17 months, log-rank P < 0.01) and CSS (32 vs 20 months, log-rank P < 0.01) was associated with NACT compared with surgery alone. Multivariable Cox regression analysis showed that NACT, stage, and surgery type were prognostic factors for OS and CSS in GBC patients. Subgroup analysis revealed that the survival hazard ratios (HRs) of NACT vs non-NACT for localized or locoregionally advanced GBC patients were significant in most subgroups. CONCLUSIONS: NACT may provide therapeutic benefits for localized or locoregionally advanced GBC patients, especially for those with advanced stage, node-positive, poorly differentiated or undifferentiated disease. NACT combined with radical surgery was associated with a survival advantage. Therefore, NACT combined with surgery may provide a better treatment option for resectable GBC patients.


Subject(s)
Gallbladder Neoplasms , Neoadjuvant Therapy , Propensity Score , SEER Program , Humans , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/mortality , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/therapy , Female , Male , Neoadjuvant Therapy/methods , Neoadjuvant Therapy/statistics & numerical data , Middle Aged , Prognosis , Aged , Chemotherapy, Adjuvant/statistics & numerical data , Chemotherapy, Adjuvant/methods , Neoplasm Staging , Kaplan-Meier Estimate
2.
Oral Oncol ; 158: 106981, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142147

ABSTRACT

PURPOSE: To evaluate the effectiveness and safety of low-dose gemcitabine and metronomic capecitabine in combination with tislelizumab for patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC) who have previously received other anti-PD-1 therapies. METHODS: This retrospective, observational study included patients with RM-NPC who had prior treatment with anti-PD-1 therapy and subsequently received tislelizumab along with low-dose gemcitabine and metronomic capecitabine between March 2019 and August 2023. Progression-free survival (PFS) was estimated using the Kaplan-Meier method. RESULTS: Among 25 eligible patients, 8 (20%) achieved a complete response (CR). The objective response rate (ORR) was 68%, and the disease control rate (DCR) was 80%. The 1-year PFS rate was 78%. All patients experienced treatment-related adverse events, which were all grade 1 or 2. CONCLUSION: The combination of tislelizumab with low-dose gemcitabine and metronomic capecitabine demonstrated promising antitumor effectiveness in RM-NPC patients who had failed previous anti-PD-1 therapy, with a manageable safety profile.

3.
Cell Death Differ ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143228

ABSTRACT

With advancements in genomics and immunology, immunotherapy has emerged as a revolutionary strategy for tumor treatment. However, pancreatic ductal adenocarcinoma (PDAC), an immunologically "cold" tumor, exhibits limited responsiveness to immunotherapy. This study aimed to address the urgent need to uncover PDAC's immune microenvironment heterogeneity and identify the molecular mechanisms driving immune evasion. Using single-cell RNA sequencing datasets and spatial proteomics, we discovered LIM domain only 7 (LMO7) in PDAC cells as a previously unrecognized driver of immune evasion through Treg cell enrichment. LMO7 was positively correlated with infiltrating regulatory T cells (Tregs) and dysfunctional CD8+ T cells. A series of in vitro and in vivo experiments demonstrated LMO7's significant role in promoting Treg cell differentiation and chemotaxis while inhibiting CD8+ T cells and natural killer cell cytotoxicity. Mechanistically, LMO7, through its LIM domain, directly bound and promoted the ubiquitination and degradation of Foxp1. Foxp1 negatively regulated transforming growth factor-beta (TGF-ß) and C-C motif chemokine ligand 5 (CCL5) expression by binding to sites 2 and I/III, respectively. Elevated TGF-ß and CCL5 levels contribute to Treg cell enrichment, inducing immune evasion in PDAC. Combined treatment with TGF-ß/CCL5 antibodies, along with LMO7 inhibition, effectively reversed immune evasion in PDAC, activated the immune response, and prolonged mouse survival. Therefore, this study identified LMO7 as a novel facilitator in driving immune evasion by promoting Treg cell enrichment and inhibiting cytotoxic effector functions. Targeting the LMO7-Foxp1-TGF-ß/CCL5 axis holds promise as a therapeutic strategy for PDAC. Graphical abstract revealing LMO7 as a novel facilitator in driving immune evasion by promoting Tregs differentiation and chemotaxis, inducing CD8+ T/natural killer cells inhibition.

4.
Adv Sci (Weinh) ; : e2406633, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116343

ABSTRACT

Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system, with poor response to current treatments. Abnormal alternative splicing has been associated with the development of a variety of tumors. Combining the GEO database and GBC mRNA-seq analysis, it is found high expression of the splicing factor polypyrimidine region- binding protein 3 (PTBP3) in GBC. Multi-omics analysis revealed that PTBP3 promoted exon skipping of interleukin-18 (IL-18), resulting in the expression of ΔIL-18, an isoform specifically expressed in tumors. That ΔIL-18 promotes GBC immune escape by down-regulating FBXO38 transcription levels in CD8+T cells to reduce PD-1 ubiquitin-mediated degradation is revealed. Using a HuPBMC mouse model, the role of PTBP3 and ΔIL-18 in promoting GBC growth is confirmed, and showed that an antisense oligonucleotide that blocked ΔIL-18 production displayed anti-tumor activity. Furthermore, that the H3K36me3 promotes exon skipping of IL-18 by recruiting PTBP3 via MRG15 is demonstrated, thereby coupling the processes of IL-18 transcription and alternative splicing. Interestingly, it is also found that the H3K36 methyltransferase SETD2 binds to hnRNPL, thereby interfering with PTBP3 binding to IL-18 pre-mRNA. Overall, this study provides new insights into how aberrant alternative splicing mechanisms affect immune escape, and provides potential new perspectives for improving GBC immunotherapy.

5.
Res Sq ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39108474

ABSTRACT

Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.

6.
Sci Data ; 11(1): 860, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122730

ABSTRACT

We present a one-year-long multi-sensor dataset collected from honey bee colonies (Apis mellifera) with rich phenotypic measurements. Data were collected non-stop from April 2020 to April 2021 from 53 hives located at two apiaries in Québec, Canada. The sensor data included audio features, temperature, and relative humidity. The phenotypic measurements contained beehive population, number of brood cells (eggs, larva and pupa), Varroa destructor infestation levels, defensive and hygienic behaviors, honey yield, and winter mortality. Our study is amongst the first to combine a wide variety of phenotypic trait measurements annotated by apicultural science experts with multi-sensor data, which facilitate a broader scope of analysis. We first summarize the data collection procedure, sensor data pre-processing steps, and data composition. We then provide an overview of the phenotypic data distribution as well as a visualization of the sensor data patterns. Lastly, we showcase several hive monitoring applications based on sensor data analysis and machine learning, such as winter mortality prediction, hive population estimation, and the presence of an active and laying queen.


Subject(s)
Phenotype , Bees , Animals , Varroidae , Honey , Quebec , Machine Learning , Seasons
7.
Drug Des Devel Ther ; 18: 3315-3327, 2024.
Article in English | MEDLINE | ID: mdl-39100220

ABSTRACT

Purpose: Oral drug administration is the most common and convenient route, offering good patient compliance but drug solubility limits oral applications. Celecoxib, an insoluble drug, requires continuous high-dose oral administration, which may increase cardiovascular risk. The nanostructured lipid carriers prepared from drugs and lipid excipients can effectively improve drug bioavailability, reduce drug dosage, and lower the risk of adverse reactions. Methods: In this study, we prepared hyaluronic acid-modified celecoxib nanostructured lipid carriers (HA-NLCs) to improve the bioavailability of celecoxib and reduce or prevent adverse drug reactions. Meanwhile, we successfully constructed a set of FDA-compliant biological sample test methods to investigate the pharmacokinetics of HA-NLCs in rats. Results: The pharmacokinetic analysis confirmed that HA-NLCs significantly enhanced drug absorption, resulting in an AUC0-t 1.54 times higher than the reference formulation (Celebrex®). Moreover, compared with unmodified nanostructured lipid carriers (CXB-NLCs), HA-NLCs enhance the retention time and improve the drug's half-life in vivo. Conclusion: HA-NLCs significantly increased the bioavailability of celecoxib. The addition of hyaluronic acid prolonged the drug's in vivo duration of action and reduced the risk of cardiovascular adverse effects associated with the frequent administration of oral celecoxib.


Subject(s)
Biological Availability , Celecoxib , Drug Carriers , Hyaluronic Acid , Lipids , Nanostructures , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Celecoxib/administration & dosage , Celecoxib/pharmacokinetics , Celecoxib/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Animals , Rats , Drug Carriers/chemistry , Lipids/chemistry , Male , Chromatography, High Pressure Liquid , Nanostructures/chemistry , Administration, Oral , Liquid Chromatography-Mass Spectrometry
8.
Cells ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39120264

ABSTRACT

Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and ß3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the ß3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of ß3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.


Subject(s)
Adipose Tissue, White , Cold Temperature , Hyaluronic Acid , Hyaluronic Acid/metabolism , Animals , Mice , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Male , Adipose Tissue, Beige/metabolism , Adipocytes, Beige/metabolism , Adipocytes, Beige/drug effects , Extracellular Matrix/metabolism , Dioxoles/pharmacology , Receptors, Adrenergic, beta-3/metabolism , Adrenergic beta-3 Receptor Agonists/pharmacology
9.
Stroke ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114924

ABSTRACT

BACKGROUND: Cerebral small vessel disease (CSVD) is a group of neurological disorders that affect the small blood vessels within the brain, for which no effective treatments are currently available. We conducted a Mendelian randomization (MR) study to identify candidate therapeutic genes for CSVD. METHODS: We retrieved genome-wide association study data from 6 recently conducted, extensive investigations focusing on CSVD magnetic resonance imaging markers and performed a 2-sample MR analysis to assess the potential causal effects of gene expression and protein level within druggable genes on CSVD in blood and brain tissues. Colocalization analyses and repeat studies were undertaken to verify the relationship. Additionally, mediation analysis was conducted to explore the potential mechanisms involving druggable genes and known risk factors for CSVD. Finally, phenome-wide MR analyses were applied to evaluate the potential adverse effects related to the identified druggable genes for CSVD treatment. RESULTS: Overall, 5 druggable genes consistently showed associations with CSVD in MR analyses across both the discovery and validation cohorts. Notably, the ALDH2 and KLHL24 genes were identified as associated with CSVD in both blood and brain tissues, whereas the genes ADRB1, BTN3A2, and EFEMP1 were exclusively detected in brain tissue. Moreover, mediation analysis elucidated the proportion of the total effects mediated by CSVD risk factors through candidate druggable genes, which ranged from 5.5% to 18.5%, and offered potential explanations for the observed results. A comprehensive phenome-wide MR analysis further emphasized both the therapeutic benefits and potential side effects of targeting these candidate druggable genes. CONCLUSIONS: This study provides genetic evidence supporting the potential therapeutic benefits of targeting druggable genes for treating CSVD, which will be useful for prioritizing CSVD drug development.

10.
Mediators Inflamm ; 2024: 7275309, 2024.
Article in English | MEDLINE | ID: mdl-39118979

ABSTRACT

Inflammatory bowel disease (IBD), which encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a complicated illness whose exact cause is yet unknown. Necroptosis is associated with IBD pathogenesis, leading to intestinal barrier abnormalities and uncontrolled inflammation. Molecules involved in necroptosis, however, exhibit different expression levels in IBD and its associated colorectal cancer. Multiple studies have shown that inhibiting these molecules alleviates necroptosis-induced IBD. Moreover, due to the severe scarcity of clinical medications for treating IBD caused by necroptosis, we review the various functions of crucial necroptosis molecules in IBD, the stimuli regulating necroptosis, and the current emerging therapeutic strategies for treating IBD-associated necroptosis. Eventually, understanding the pathogenesis of necroptosis in IBD will enable the development of additional therapeutic approaches for the illness.


Subject(s)
Inflammatory Bowel Diseases , Necroptosis , Humans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Animals , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Crohn Disease/metabolism , Crohn Disease/pathology
11.
Article in English | MEDLINE | ID: mdl-39121114

ABSTRACT

BACKGROUND: Mesenteric lymphadenitis (ML) demonstrates a distinctive inclination for the pediatric and adolescent demographic and the diagnosis of ML in young children poses a substantial challenge. OBJECTIVE: This prospective study aimed to assess the diagnostic efficacy of Superb Microvascular Imaging (SMI) and Virtual Touch Tissue Imaging quantification (VTIQ) in distinguishing pediatric mesenteric lymphadentitis. METHODS: We examined 82 mesentric lymph node (MLN) in pediatric patients with mesenteric lymphadentitis and 50 MLN in a healthy group. SMI was utilized to evaluate vascularity within the MLN, while MLN stiffness, quantified as shear wave velocity (SWV) in meters per second (m/s), was assessed using VTIQ. We compared the diagnostic performance of greyscale Ultrasound, US combined with SMI, US combined with VTIQ, and US combined with both SMI and VTIQ. RESULTS: SMI revealed a significant distinction between mesenteric lymphadentitis and normal MLN (p <  0.001). MLN affected by mesenteric lymphadentis exhibited increased vascularity (marked vascularity: 13/82, 15.85%) compared to normal MLN (marked vascularity: 1/50, 2.00%). Statistically significant differences were observed in SWV values beween mesenteric lymphadentitis and normal MLN (all p-values <0.001). The mean and minimum SWV values for MLN with mesenteric lymphadentitis were 1.66±0.77 m/s and 1.51±0.53 m/s, respectively. Control group SWV values were approximately three times higher than those in the mesenteric lymphadenitis group. The highest area under the curve values were achieved with the combination of all three modalities (0.837, 95% confidence interval: 0.763- 0.896), followed by US + VTIQ (0.795, 0.716- 0.860), US + SMI (0.753, 0.670- 0.824) and US alone (0.642, 0.554- 0.724). CONCLUSION: SMI and VTIQ offer a promising noninvasive adjunct to grayscale ultrasound for identifying mesenteric lymphadentitis in pediatric patients.

12.
Front Plant Sci ; 15: 1444234, 2024.
Article in English | MEDLINE | ID: mdl-39157518

ABSTRACT

Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.

13.
Parasit Vectors ; 17(1): 350, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164750

ABSTRACT

BACKGROUND: Schistosomiasis is still one of the most serious parasitic diseases. Evidence showed that the metabolite profile in serum can potentially act as a marker for parasitic disease diagnosis and evaluate disease progression and prognosis. However, the serum metabolome in patients with Schistosoma japonicum infection is not well defined. In this study, we investigated the metabolite profiles of patients with chronic and with advanced S. japonicum infection. METHODS: The sera of 33 chronic S. japonicum patients, 15 patients with advanced schistosomiasis and 17 healthy volunteers were collected. Samples were extracted for metabolites and analyzed with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULTS: We observed significant differences in metabolite profiles in positive and negative ion modes between patients with advanced and chronic S. japonicum infection. In patients with chronic S. japonicum infection, 199 metabolites were significantly upregulated while 207 metabolites were downregulated in advanced infection. These differential metabolites were mainly concentrated in steroid hormone biosynthesis, cholesterol metabolism and bile secretion pathways. We also found that certain bile acid levels were significantly upregulated in the progression from chronic to advanced S. japonicum infection. In receiver operator characteristic (ROC) analysis, we identified three metabolites with area under the curve (AUC) > 0.8, including glycocholic (GCA), glycochenodeoxycholate (GCDCA) and taurochenodeoxycholic acid (TCDCA) concentrated in cholesterol metabolism, biliary secretion and primary bile acid biosynthesis. CONCLUSIONS: This study provides evidence that GCA, GCDCA and TCDCA can potentially act as novel metabolite biomarkers to distinguish patients in different stages of S. japonicum infection. This study will contribute to the understanding of the metabolite mechanisms of the transition from chronic to advanced S. japonicum infection, although more studies are needed to validate this potential role and explore the underlying mechanisms.


Subject(s)
Biomarkers , Mass Spectrometry , Metabolomics , Schistosoma japonicum , Schistosomiasis japonica , Humans , Schistosomiasis japonica/parasitology , Schistosomiasis japonica/metabolism , Schistosomiasis japonica/blood , Metabolomics/methods , Schistosoma japonicum/metabolism , Male , Female , Animals , Adult , Middle Aged , Mass Spectrometry/methods , Biomarkers/blood , Metabolome , Chromatography, High Pressure Liquid/methods , Aged , Young Adult , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
14.
Ultrasound Med Biol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097493

ABSTRACT

OBJECTIVE: To explore the performance of ultrasound image-based radiomics in predicting World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading of clear-cell renal cell carcinoma (ccRCC). METHODS: A retrospective study was conducted via histopathological examination on participants with ccRCC from January 2021 to August 2023. Participants were randomly allocated to a training set and a validation set in a 3:1 ratio. The maximum cross-sectional image of the lesion on the preoperative ultrasound image was obtained, with the region of interest (ROI) delineated manually. Radiomic features were computed from the ROIs and subsequently normalized using Z-scores. Wilcoxon test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature reduction and model development. The performance of the model was estimated by indicators including area under the curve (AUC), sensitivity and specificity. RESULTS: A total of 336 participants (median age, 57 y; 106 women) with ccRCC were finally included, of whom 243 had low-grade tumors (grade 1-2) and 93 had high-grade tumors (grade 3-4). A total of 1163 radiomic features were extracted from the ROIs for model construction and 117 informative radiomics features selected by Wilcoxon test were submitted to LASSO. Our ultrasound-based radiomics model included 51 features and achieved AUCs of 0.90 and 0.79 for the training and validation sets, respectively. Within the training set, the sensitivity and specificity measured 0.75 and 0.92, respectively, whereas in the validation set, the sensitivity and specificity measured 0.65 and 0.84, respectively. In the subgroup analysis, for the training and validation sets Philips AUCs were 0.91 and 0.75, Toshiba AUCs were 0.82 and 0.90, and General Electric AUCs were 0.95 and 0.82, respectively. CONCLUSION: Ultrasound-based radiomics can effectively predict the WHO/ISUP grading of ccRCC.

15.
Zhongguo Gu Shang ; 37(7): 670-5, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39104067

ABSTRACT

OBJECTIVE: To investigate the clinical effect of anterior cervical discectomy and fusion (ACDF) in the treatment of cervical spondylosis of vertebral artery type(CSA). METHODS: The clinical data of 42 patients with CSA from January 2020 to January 2022 were retrospectively analyzed. There were 25 males and 17 females, aged from 30 to 74 years old with an average of (53.9±11.0) years old. There were 18 cases with single-segment lesions, 17 cases with two-segment lesions, and 7 cases with three-segment lesions. The American Academy of Otolaryngology-Head and Neck Surgery's Hearing and Balance Committee score (CHE), the Neck Disability Index (NDI) and the cervical curvature Cobb angle were recorded before surgery and after surgery at 6 months. RESULTS: All 42 ACDF patients were followed up for 6 to 30 months with an average of (14.0±5.2) months. The operative time ranged from 95 to 220 min with an average of (160.38±36.77) min, the intraoperative blood loss ranged from 30 to 85 ml with an average of (53.60±18.98) ml. Tow patients had mild postoperative dysphagia, which improved with symptomatic treatment such as nebulized inhalation. CHE score decreased from (4.05±0.96) preoperatively to (2.40±0.70) at 6 months postoperatively (t=12.97, P<0.05). The number of improved vertigo at 6 months postoperatively was 38, with an improvement rate of 90.5%. NDI score was reduced from (34.43±8.04) preoperatively to (20.76±3.91) at 6 months postoperatively (t=11.83, P<0.05). The cervical curvature Cobb angle improved from (8.04±6.70)° preoperatively to (12.42±5.23)° at 6 months postoperatively (t=-15.96, P<0.05). CONCLUSION: The ACDF procedure has outstanding clinical efficacy in treating CSA. The operation can rapidly relieve patients' episodic vertigo symptoms by relieving bony compression and reconstructing cervical curvature. However, it is necessary to strictly grasp the indications for surgery and clarify the causes of vertigo in patients, and ACDF surgery is recommended for CSA patients for whom conservative treatment is ineffective.


Subject(s)
Cervical Vertebrae , Diskectomy , Spinal Fusion , Spondylosis , Vertebral Artery , Humans , Male , Female , Middle Aged , Diskectomy/methods , Spinal Fusion/methods , Spondylosis/surgery , Aged , Adult , Cervical Vertebrae/surgery , Vertebral Artery/surgery , Retrospective Studies , Treatment Outcome
16.
MedComm (2020) ; 5(9): e661, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39156767

ABSTRACT

In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.

17.
Exp Cell Res ; 441(2): 114172, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39053869

ABSTRACT

In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.


Subject(s)
Aging , Hydrogen Sulfide , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Humans , Aging/metabolism , Animals , Autophagy/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects
18.
Front Pharmacol ; 15: 1418560, 2024.
Article in English | MEDLINE | ID: mdl-39035989

ABSTRACT

Introduction: Basal cell carcinoma (BCC) is the most common skin cancer, lacking reliable biomarkers or therapeutic targets for effective treatment. Genome-wide association studies (GWAS) can aid in identifying drug targets, repurposing existing drugs, predicting clinical trial side effects, and reclassifying patients in clinical utility. Hence, the present study investigates the association between plasma proteins and skin cancer to identify effective biomarkers and therapeutic targets for BCC. Methods: Proteome-wide mendelian randomization was performed using inverse-variance-weight and Wald Ratio methods, leveraging 1 Mb cis protein quantitative trait loci (cis-pQTLs) in the UK Biobank Pharma Proteomics Project (UKB-PPP) and the deCODE Health Study, to determine the causal relationship between plasma proteins and skin cancer and its subtypes in the FinnGen R10 study and the SAIGE database of Lee lab. Significant association with skin cancer and its subtypes was defined as a false discovery rate (FDR) < 0.05. pQTL to GWAS colocalization analysis was executed using a Bayesian model to evaluate five exclusive hypotheses. Strong colocalization evidence was defined as a posterior probability for shared causal variants (PP.H4) of ≥0.85. Mendelian randomization-Phenome-wide association studies (MR-PheWAS) were used to evaluate potential biomarkers and therapeutic targets for skin cancer and its subtypes within a phenome-wide human disease category. Results: PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 (besides RNASET2, five other plasma proteins were previously unknown in expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL)) were significantly associated with BCC after FDR correction in the UKB-PPP and deCODE studies. Reverse MR showed no association between BCC and these proteins. PTGES2 and RNASET2 exhibited strong evidence of colocalization with BCC based on a posterior probability PP.H4 >0.92. Furthermore, MR-PheWAS analysis showed that BCC was the most significant phenotype associated with PTGES2 and RNASET2 among 2,408 phenotypes in the FinnGen R10 study. Therefore, PTGES2 and RNASET2 are highlighted as effective biomarkers and therapeutic targets for BCC within the phenome-wide human disease category. Conclusion: The study identifies PTGES2 and RNASET2 plasma proteins as novel, reliable biomarkers and therapeutic targets for BCC, suggesting more effective clinical application strategies for patients.

19.
Psych J ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034394

ABSTRACT

People possessing musical knowledge tend to enjoy music more, but the linkage remains to be determined. Based on the shared affective motion experience model for music appreciation, we hypothesized that acquiring musical knowledge about the music itself, for example, an analytical understanding of music elements and the related emotional expressions, would increase music liking. To test the hypothesis, we asked 48 participants to learn analytical or historical information about a piece of music by watching a pre-recorded teaching video. Learners' physiological responses, such as skin conductance and heart rate, were recorded during learning. The increase of music liking was observed after both types of knowledge acquisition, but more so for analytical knowledge. Notably, acquiring analytical knowledge made learners' skin conductance more similar, indicating the alignment of physiological responses. This physiological similarity, correlated with analytical knowledge similarity, could mediate the effect of knowledge acquisition on music liking. In sum, this study reveals the impact of analytical knowledge on music enjoyment and the associated neurophysiological mechanism. It extends the theoretical framework of shared affective motion experience to explain how musical knowledge influences music appreciation.

20.
Hum Brain Mapp ; 45(11): e26790, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39037119

ABSTRACT

Brain glymphatic dysfunction is critical in neurodegenerative processes. While animal studies have provided substantial insights, understandings in humans remains limited. Recent attention has focused on the non-invasive evaluation of brain glymphatic function. However, its association with brain parenchymal lesions in large-scale population remains under-investigated. In this cross-sectional analysis of 1030 participants (57.14 ± 9.34 years, 37.18% males) from the Shunyi cohort, we developed an automated pipeline to calculate diffusion-weighted image analysis along the perivascular space (ALPS), with a lower ALPS value indicating worse glymphatic function. The automated ALPS showed high consistency with the manual calculation of this index (ICC = 0.81, 95% CI: 0.662-0.898). We found that those with older age and male sex had lower automated ALPS values (ß = -0.051, SE = 0.004, p < .001, per 10 years, and ß = -0.036, SE = 0.008, p < .001, respectively). White matter hyperintensity (ß = -2.458, SE = 0.175, p < .001) and presence of lacunes (OR = 0.004, 95% CI < 0.002-0.016, p < .001) were significantly correlated with decreased ALPS. The brain parenchymal and hippocampal fractions were significantly associated with decreased ALPS (ß = 0.067, SE = 0.007, p < .001 and ß = 0.040, SE = 0.014, p = .006, respectively) independent of white matter hyperintensity. Our research implies that the automated ALPS index is potentially a valuable imaging marker for the glymphatic system, deepening our understanding of glymphatic dysfunction.


Subject(s)
Diffusion Magnetic Resonance Imaging , Glymphatic System , Humans , Male , Female , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Glymphatic System/physiopathology , Middle Aged , Cross-Sectional Studies , Aged , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Image Processing, Computer-Assisted/methods , Adult , Cohort Studies
SELECTION OF CITATIONS
SEARCH DETAIL