Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3949, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729934

ABSTRACT

Topological domain structures have drawn great attention as they have potential applications in future electronic devices. As an important concept linking the quantum and classical magnetism, a magnetic Bloch point, predicted in 1960s but not observed directly so far, is a singular point around which magnetization vectors orient to nearly all directions. Here we show polar Bloch points in tensile-strained ultrathin ferroelectric PbTiO3 films, which are alternatively visualized by phase-field simulations and aberration-corrected scanning transmission electron microscopic imaging. The phase-field simulations indicate local steady-state negative capacitance around the Bloch points. The observation of polar Bloch points and their emergent properties consequently implies novel applications in future integrated circuits and low power electronic devices.

2.
Nano Lett ; 24(14): 4082-4090, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38526914

ABSTRACT

The generally nonpolar SrTiO3 has attracted more attention recently because of its possibly induced novel polar states and related paraelectric-ferroelectric phase transitions. By using controlled pulsed laser deposition, high-quality, ultrathin, and strained SrTiO3 layers were obtained. Here, transmission electron microscopy and theoretical simulations have unveiled highly polar states in SrTiO3 films even down to one unit cell at room temperature, which were stabilized in the PbTiO3/SrTiO3/PbTiO3 sandwich structures by in-plane tensile strain and interfacial coupling, as evidenced by large tetragonality (∼1.05), notable polar ion displacement (0.019 nm), and thus ultrahigh spontaneous polarization (up to ∼50 µC/cm2). These values are nearly comparable to those of the strong ferroelectrics as the PbZrxTi1-xO3 family. Our findings provide an effective and practical approach for integrating large strain states into oxide films and inducing polarization in nonpolar materials, which may broaden the functionality of nonpolar oxides and pave the way for the discovery of new electronic materials.

3.
Nat Commun ; 14(1): 3376, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291226

ABSTRACT

The period of polar domain (d) in ferroics was commonly believed to scale with corresponding film thicknesses (h), following the classical Kittel's law of d ∝ [Formula: see text]. Here, we have not only observed that this relationship fails in the case of polar skyrmions, where the period shrinks nearly to a constant value, or even experiences a slight increase, but also discovered that skyrmions have further persisted in [(PbTiO3)2/(SrTiO3)2]10 ultrathin superlattices. Both experimental and theoretical results indicate that the skyrmion periods (d) and PbTiO3 layer thicknesses in superlattice (h) obey the hyperbolic function of d = Ah + [Formula: see text] other than previous believed, simple square root law. Phase-field analysis indicates that the relationship originates from the different energy competitions of the superlattices with PbTiO3 layer thicknesses. This work exemplified the critical size problems faced by nanoscale ferroelectric device designing in the post-Moore era.


Subject(s)
Motion Pictures
4.
Nano Lett ; 23(4): 1522-1529, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36722976

ABSTRACT

Antiferroelectrics characterized by voltage-driven reversible transitions between antiparallel and parallel polarity are promising for cutting-edge electronic and electrical power applications. Wide-ranging explorations revealing the macroscopic performances and microstructural characteristics of typical antiferroelectric systems have been conducted. However, the underlying mechanism has not yet been fully unraveled, which depends largely on the atomistic processes. Herein, based on atomic-resolution transmission electron microscopy, the deterministic phase transition pathway along with the underlying lattice-by-lattice details in lead zirconate thin films was elucidated. Specifically, we identified a new type of ferrielectric-like dipole configuration with both angular and amplitude modulations, which plays the role of a precursor for a subsequent antiferroelectric to ferroelectric transformation. With the participation of the ferrielectric-like phase, the phase transition pathways driven by the phase boundary have been revealed. We provide new insights into the consecutive phase transformation in low-dimensional lead zirconate, which thus would promote potential antiferroelectric-based multifunctional devices.

5.
ACS Appl Mater Interfaces ; 15(3): 4226-4233, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36633961

ABSTRACT

Inducing clear ferroelectricity in the quantum paraelectric SrTiO3 is important for triggering methods to discover hidden phases in condensed matter physics. Several methods such as isotope substitution and freestanding membranes could introduce ferroelectricity in SrTiO3 toward nonvolatile memory applications. However, the stable transformation from quantum paraelectric SrTiO3 to ferroelectricity SrTiO3 at room temperature still remains challenging. Here, we used multiple nano-engineering in (SrTiO3)0.65/(CeO2)0.35 films to achieve an emergent room-temperature ferroelectricity. It is shown that the CeO2 nanocolumns impose large out-of-plane strains and induce Sr/O deficiency in the SrTiO3 matrix to form a clear tetragonal structure, which leads to an apparent room-temperature ferroelectric polarization up to 2.5 µC/cm2. In collaboration with density functional theory calculations, it is proposed that the compressive strains combined with elemental deficiency give rise to local redistribution of charge density and orbital order, which induce emergent tetragonality of the strained SrTiO3. Our work thus paves a pathway for architecting functional systems in perovskite oxides using a multiple nano-design.

6.
ACS Appl Mater Interfaces ; 15(2): 3163-3171, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36621962

ABSTRACT

Materials with multiple order parameters, typically, in which ferroelectricity and magnetism are coupled, are illuminative for next-generation multifunctional electronics. However, searching for such single-phase multiferroics is challenging owing to antagonistic orbital occupancy and chemical bonding requirements for polarity and magnetism. Appropriate multiferroic candidates have been proposed, but their practical implementation is impeded by the low working temperature, weak coupling between ferroic orders, or antiparallel spin alignment in magnetic sublattices. Here, we report a family of single-phase multiferroic materials in which high-temperature magnetism and voltage-switchable ferroelectricity are coupled. Using pulsed laser deposition, we have fabricated single-crystalline thin films incorporating a uniformly percolated open-shell dn framework, which are composed of Fe cations with B-site occupancy and exhibit long-range spin ordering into the displacive ferroelectric PbTiO3 lattice, as demonstrated by atomically resolved chemical analysis. The tetragonal polar Pb(Ti1-x,Fex)O3 (PFT(x), x ≤ 0.10) family exhibits a switchable ferroelectric nature and magnetic interaction with a moderate coercive field of around 300 Oe at room temperature. Notably, the magnetic order even persists above 500 K, which is higher than already reported potential multiferroic candidates until now. Our strategy of merging a spin-ordered sublattice into inherent ferroelectrics via atomic occupancy engineering provides an available pathway for highly thermally stable multiferroic and spintronic applications.

7.
ACS Appl Mater Interfaces ; 14(42): 48052-48060, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36226575

ABSTRACT

High magnetic order temperature, sustainable polar insulating state, and tolerance to device integrations are substantial advantages for applications in next-generation spintronics. However, engineering such functionality in a single-phase system remains a challenge owing to the contradicted chemical and electronic requirements for polar nature and magnetism, especially with an ordering state highly above room temperature. Perovskite-related oxides with unique flexibility allow electron-unpaired subsystems to merge into the polar lattice to induce magnetic interactions, combined with their inherent asymmetry, thereby promising polar magnet design. Herein, by atomic-level composition assembly, a family of Ti/Fe co-occupied perovskite oxide films Pb(Ti1-x,Fex)O3 (PFT(x)) with a Ruddlesden-Popper superstructure are successfully synthesized on several different substrates, demonstrating exceptional adaptability to different integration conditions. Furthermore, second-harmonic generation measurements convince the symmetry-breaking polar character. Notably, a ferromagnetic ground state up to 600 K and a steady insulating state far beyond room temperature were achieved simultaneously in these films. This strategy of constructing layered modular superlattices in perovskite oxides could be extended to other strongly correlated systems for triggering nontrivial quantum physical phenomena.

8.
Adv Mater ; 34(32): e2106396, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35730916

ABSTRACT

Manipulating ferroic orders and realizing their coupling in multiferroics at room temperature are promising for designing future multifunctional devices. Single external stimulation has been extensively proved to demonstrate the ability of ferroelastic switching in multiferroic oxides, which is crucial to bridge the ferroelectricity and magnetism. However, it is still challenging to directly realize multi-field-driven magnetoelectric coupling in multiferroic oxides as potential multifunctional electrical devices. Here, novel magneto-electric-optical coupling in multiferroic BiFeO3 -based thin films at room temperature mediated by deterministic ferroelastic switching using piezoresponse/magnetic force microscopy and aberration-corrected transmission electron microscopy are shown. Reversible photoinduced ferroelastic switching exhibiting magnetoelectric responses is confirmed in BiFeO3 -based films, which works at flexible strain states. This work directly demonstrates room-temperature magneto-electric-optical coupling in multiferroic films, which provides a framework for designing potential multi-field-driven magnetoelectric devices such as energy conservation memories.

9.
ACS Appl Mater Interfaces ; 14(7): 9724-9733, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138804

ABSTRACT

Ferroelectric ultrathin films have great potential in electronic devices and device miniaturization with the innovation of technology. In the process of product commercialization, understanding the domain evolution and topological properties of ferroelectrics is a prerequisite for high-density storage devices. In this work, a series of ultrathin PbTiO3 (PTO) films with varying thicknesses were deposited on cubic KTaO3 substrates by pulsed laser deposition and were researched by Cs-corrected scanning transmission electron microscopy (STEM), reciprocal space mapping (RSM), and piezoresponse force microscopy (PFM). RSM experiments indicate the existence of a/c domains and show that the lattice constant varies continuously, which is further confirmed by atomic-scale STEM imaging. Diffraction contrast analysis clarifies that with the decrease in PTO film thickness, the critical thickness for the formation of a/c domains could be missing. When the thickness of PTO films is less than 6 nm, the domain configurations in the ultrathin PTO films are the coexistence of a/c domains and bowl-like topological structures, where the latter ones were identified as convergent and divergent types of meron. In addition, abundant 90° charged domain walls in these ultrathin PTO films were identified. PFM studies reveal clear ferroelectric properties for these ultrathin PTO films. These results may shed light on further understanding the domain evolution and topological properties in ultrathin ferroelectric PTO films.

10.
Sci Adv ; 7(28)2021 Jul.
Article in English | MEDLINE | ID: mdl-34244147

ABSTRACT

A dipole wave is composed of head-to-tail connected electric dipoles in the form of sine function. Potential applications in information carrying, transporting, and processing are expected, and logic circuits based on nonlinear wave interaction are promising for dipole waves. Although similar spin waves are well known in ferromagnetic materials for their roles in some physical essence, electric dipole wave behavior and even its existence in ferroelectric materials are still elusive. Here, we observe the atomic morphology of large-scale dipole waves in PbTiO3/SrTiO3 superlattice mediated by tensile epitaxial strains on scandate substrates. The dipole waves can be expressed in the formula of y = Asin (2πx/L) + y 0, where the wave amplitude (A) and wavelength (L) correspond to 1.5 and 6.6 nm, respectively. This study suggests that by engineering strain at the nanoscale, it should be possible to fabricate unknown polar textures, which could facilitate the development of nanoscale ferroelectric devices.

11.
ACS Appl Mater Interfaces ; 13(26): 31001-31009, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34156226

ABSTRACT

Common pursuits of developing nanometric logic and neuromorphic applications have motivated intensive research studies into low-dimensional resistive random-access memory (RRAM) materials. However, fabricating resistive switching medium with inherent stability and homogeneity still remains a bottleneck. Herein, we report a self-assembled uniform biphasic system, comprising low-resistance 3 nm-wide (Bi0.4,La0.6)FeO3-δ nanosheets coherently embedded in a high-resistance (Bi0.2,La0.8)FeO3-δ matrix, which were spinodally decomposed from an overall stoichiometry of the (Bi0.24,La0.76)FeO3-δ parent phase, as a promising nanocomposite to be a stable and endurable RRAM medium. The Bi-rich nanosheets accommodating high concentration of oxygen vacancies as corroborated by X-ray photoelectron spectroscopy and electron energy loss spectroscopy function as fast carrier channels, thus enabling an intrinsic electroforming-free character. Surficial electrical state and resistive switching properties are investigated using multimodal scanning probe microscopy techniques and macroscopic I-V measurements, showing high on/off ratio (∼103) and good endurance (up to 1.6 × 104 cycles). The established spinodal decomposition-driven phase-coexistence BLFO system demonstrates the merits of stability, uniformity, and endurability, which is promising for further application in RRAM devices.

12.
Heliyon ; 4(12): e00993, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30623124

ABSTRACT

Suitable TM doping at the Mn site is an important access to manipulate magnetic properties of hexagonal YMnO3, however, it has not yet been systematically explored how the strength of antiferromagnetic interactions and the magnetic transition temperatures (T N) are modified in the doping YMn0.917TM0.083O3 systems. In the work, we have performed first-principles calculations to study the effect of TM doping on the structural and magnetic properties of hexagonal YMn0.917TM0.083O3 bulks; the results are combined with the available experimental results. The calculated results reveal that the planar TM-O bonds and O-TM-O angles of TMO5 bipyramid are both prominent structural features for the transformations of magnetic properties. We have also predicted the Ti, V, Cr and Fe doping effects on magnetic properties and further analyzed the TM electronic structures of TMO5 bipyramid in the YMn0.917TM0.083O3(001)/MgO(001) film configurations, which could provide more understanding towards the designing of new generation multifunctional devices.

13.
Nano Lett ; 17(12): 7258-7266, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29125773

ABSTRACT

Ferroelectric flux-closures are very promising in high-density storage and other nanoscale electronic devices. To make the data bits addressable, the nanoscale flux-closures are required to be periodic via a controlled growth. Although flux-closure quadrant arrays with 180° domain walls perpendicular to the interfaces (V-closure) have been observed in strained ferroelectric PbTiO3 films, the flux-closure quadrants therein are rather asymmetric. In this work, we report not only a periodic array of the symmetric flux-closure quadrants with 180° domain walls parallel to the interfaces (H-closure) but also a large scale alternative stacking of the V- and H-closure arrays in PbTiO3/SrTiO3 multilayers. On the basis of a combination of aberration-corrected scanning transmission electron microscopic imaging and phase field modeling, we establish the phase diagram in the layer-by-layer two-dimensional arrays versus the thickness ratio of adjacent PbTiO3 films, in which energy competitions play dominant roles. The manipulation of these flux-closures may stimulate the design and development of novel nanoscale ferroelectric devices with exotic properties.

14.
ACS Appl Mater Interfaces ; 9(30): 25578-25586, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28677952

ABSTRACT

Functional oxide interfaces have received a great deal of attention owing to their intriguing physical properties induced by the interplay of lattice, orbital, charge, and spin degrees of freedom. Atomic-scale precision growth of the oxide interface opens new corridors to manipulate the correlated features in nanoelectronics devices. Here, we demonstrate that both head-to-head positively charged and tail-to-tail negatively charged BiFeO3/PbTiO3 (BFO/PTO) heterointerfaces were successfully fabricated by designing the BFO/PTO film system deliberately. Aberration-corrected scanning transmission electron microscopic mapping reveals a head-to-head polarization configuration present at the BFO/PTO interface, when the film was deposited directly on a SrTiO3 (001) substrate. The interfacial atomic structure is reconstructed, and the interfacial width is determined to be 5-6 unit cells. The polarization on both sides of the interface is remarkably enhanced. Atomic-scale structural and chemical element analyses exhibit that the reconstructed interface is rich in oxygen, which effectively compensates for the positive bound charges at the head-to-head polarized BFO/PTO interface. In contrast to the head-to-head polarization configuration, the tail-to-tail BFO/PTO interface exhibits a perfect coherency, when SrRuO3 was introduced as a buffer layer on the substrates prior to the film growth. The width of this tail-to-tail interface is estimated to be 3-4 unit cells, and oxygen vacancies are supposed to screen the negative polarization bound charge. The formation mechanism of these distinct interfaces was discussed from the perspective of charge redistribution.

15.
Nano Lett ; 17(6): 3619-3628, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28541701

ABSTRACT

Ferroelectrics hold promise for sensors, transducers, and telecommunications. With the demand of electronic devices scaling down, they take the form of nanoscale films. However, the polarizations in ultrathin ferroelectric films are usually reduced dramatically due to the depolarization field caused by incomplete charge screening at interfaces, hampering the integrations of ferroelectrics into electric devices. Here, we design and fabricate a ferroelectric/multiferroic PbTiO3/BiFeO3 system, which exhibits discontinuities in both chemical valence and ferroelectric polarization across the interface. Aberration-corrected scanning transmission electron microscopic study reveals an 8% elongation of out-of-plane lattice spacing associated with 104%, 107%, and 39% increments of δTi, δO1, and δO2 in the PbTiO3 layer near the head-to-tail polarized interface, suggesting an over ∼70% enhancement of polarization compared with that of bulk PbTiO3. Besides that in PbTiO3, polarization in the BiFeO3 is also remarkably enhanced. Electron energy loss spectrum and X-ray photoelectron spectroscopy investigations demonstrate the oxygen vacancy accumulation as well as the transfer of Fe3+ to Fe2+ at the interface. On the basis of the polar catastrophe model, FeO2/PbO interface is determined. First-principles calculation manifests that the oxygen vacancy at the interface plays a predominate role in inducing the local polarization enhancement. We propose a charge transfer mechanism that leads to the remarkable polarization increment at the PbTiO3/BiFeO3 interface. This study may facilitate the development of nanoscale ferroelectric devices by tailing the coupling of charge and lattice in oxide heteroepitaxy.

SELECTION OF CITATIONS
SEARCH DETAIL
...