Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Ecotoxicol Environ Saf ; 269: 115767, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38039851

ABSTRACT

Inhaling silica causes the occupational illness silicosis, which mostly results in the gradual fibrosis of lung tissue. Previous research has demonstrated that hypoxia-inducible factor-1α (HIF-1α) and glycolysis-related genes are up-regulated in silicosis. The role of 2-deoxy-D-glucose (2-DG) as an inhibitor of glycolysis in silicosis mouse models and its molecular mechanisms remain unclear. Therefore, we used 2-DG to observe its effect on pulmonary inflammation and fibrosis in a silicosis mouse model. Furthermore, in vitro cell experiments were conducted to explore the specific mechanisms of HIF-1α. Our study found that 2-DG down-regulated HIF-1α levels in alveolar macrophages induced by silica exposure and reduced the interleukin-1ß (IL-1ß) level in pulmonary inflammation. Additionally, 2-DG reduced silica-induced pulmonary fibrosis. From these findings, we hypothesize that 2-DG reduced glucose transporter 1 (GLUT1) expression by inhibiting glycolysis, which inhibits the expression of HIF-1α and ultimately reduces transcription of the inflammatory cytokine, IL-1ß, thus alleviating lung damage. Therefore, we elucidated the important regulatory role of HIF-1α in an experimental silicosis model and the potential defense mechanisms of 2-DG. These results provide a possible effective strategy for 2-DG in the treatment of silicosis.


Subject(s)
Pneumonia , Pulmonary Fibrosis , Silicosis , Animals , Mice , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Glucose/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/metabolism , Macrophages, Alveolar , Pneumonia/metabolism , Pulmonary Fibrosis/metabolism , Silicon Dioxide/toxicity , Silicosis/drug therapy , Silicosis/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3495-3500, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850801

ABSTRACT

The present study explored the differences in active ingredients and in vitro anti-inflammatory effects of the decoction pieces by integrated processing(IPDP) and traditional processing(TPDP) of Polygoni Cuspidati Rhizoma et Radix(PCRER).The content of polydatin, resveratrol, emodin-8-O-ß-D-glucoside, emodin, and physcion in IPDP and TPDP was determined by high-performance liquid chromatography(HPLC).The inflammation model was induced by lipopolysaccharide(LPS) in RAW264.7 cells.The mRNA levels of inflammatory cytokines tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) in 60% ethanol extracts of IPDP and TPDP of different concentrations(5 and 10 µg·mL~(-1)) were determined by PCR.The results showed that the content of polydatin and emodin-8-O-ß-D-glucoside in IPDP was significantly higher than that in TPDP, while the content of resveratrol, emodin, and physcion was higher in TPDP.The anti-inflammatory results showed that ethanol extracts of IPDP of different concentrations(5 and 10 µg·mL~(-1)) significantly inhibited the increase in the mRNA levels of IL-1ß and TNF-α induced by LPS, whereas TPDP only had a significant inhibitory effect on IL-1ß.This study preliminarily showed that the total content of five active ingredients in IPDP was higher than that in TPDP, and IPDP was superior to TPDP in anti-inflammatory activity in vitro, which provided an experimental basis for the production and application of IPDP.


Subject(s)
Drugs, Chinese Herbal , Emodin , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Emodin/pharmacology , Ethanol , Lipopolysaccharides , RNA, Messenger/genetics , Resveratrol/pharmacology , Tumor Necrosis Factor-alpha/genetics
3.
Int J Biol Macromol ; 104(Pt A): 813-820, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28669803

ABSTRACT

The tannin acid/chitosan/tripolyphosphate nanoparticles were encapsulated in polyvinyl alcohol (PVA)/poly-acrylic acid (PAA) electrospinning films by electrostatic spinning technology. To optimize the prepared condition, properties and morphology of nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The optimized initial concentration of tannin, chitosan and tripolyphosphate solutions were 1, 1, 0.5mg/ml, respectively, with adding proportion for 5:5:1. The average diameter of tannin acid/chitosan/tripolyphosphate nanoparticles was ∼80nm. The electrospinning films showed an excellent water-resistant property with 0.5wt%N,N'-Methylenebisacrylamide (MBA). Due to the antioxidant and antibacterial of tannic acid, the films possessed these properties. The antioxidant and antibacterial of these fibers significantly improved after in situ formation of silver nanoparticles (AgNPs). Electrospun films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).


Subject(s)
Chitosan/chemistry , Electricity , Metal Nanoparticles/chemistry , Polyphosphates/chemistry , Silver/chemistry , Tannins/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...