Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 2): 130441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417760

ABSTRACT

Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.


Subject(s)
Plant Proteins , Plants , Plant Proteins/chemistry , Plants/genetics , Plants/metabolism , Membrane Transport Proteins/genetics , Carbohydrates , Sugars/metabolism , Gene Expression Regulation, Plant , Phylogeny
2.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38301328

ABSTRACT

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Subject(s)
Zingiber officinale , Zingiber officinale/genetics , Phylogeny , Photosynthesis , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256002

ABSTRACT

The domains of unknown function (DUF) superfamilies contain proteins with conserved amino acid sequences without known functions. Among them, DUF668 was indicated widely involving the stress response of plants. However, understanding ZoDUF668 is still lacking. Here, 12 ZoDUF668 genes were identified in ginger by the bioinformatics method and unevenly distributed on six chromosomes. Conserved domain analysis showed that members of the same subfamily had similar conserved motifs and gene structures. The promoter region of ZoDUF668s contained the light, plant hormone and stress-responsive elements. The prediction of miRNA targeting relationship showed that nine ginger miRNAs targeted four ZoDUF668 genes through cleavage. The expression patterns of 12 ZoDUF668 genes under biotic and abiotic stress were analyzed using RT-qPCR. The results showed that the expression of seven ZoDUF668 genes was significantly downregulated under Fusarium solani infection, six ZoDUF668 genes were upregulated under cold stress, and five ZoDUF668 genes were upregulated under waterlogging stress. These results indicate that the ZoDUF668 gene has different expression patterns under different stress conditions. This study provides excellent candidate genes and provides a reference for stress-resistance research in ginger.


Subject(s)
Fusariosis , MicroRNAs , Zingiber officinale , Zingiber officinale/genetics , Amino Acid Sequence , Cold-Shock Response/genetics , Computational Biology , MicroRNAs/genetics
4.
BMC Genomics ; 25(1): 83, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245685

ABSTRACT

BACKGROUND: Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS: In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS: Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.


Subject(s)
Zingiber officinale , Zingiber officinale/genetics , Phylogeny , Gene Expression Profiling , Phosphoprotein Phosphatases/genetics , Genome, Plant , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139237

ABSTRACT

Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.


Subject(s)
Capsicum , Capsicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Genes, Plant , Multigene Family , Gene Expression Regulation, Plant , Phylogeny
6.
Int J Biol Macromol ; 253(Pt 5): 127215, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37793527

ABSTRACT

Light-harvesting chlorophyll a/b binding proteins are encoded by nucleus genes and widely involve in capturing light energy, transferring energy, and responding to various stresses. However, their roles in wheat photosynthesis and stress tolerance are largely unknown. Here, Triticum aestivumlight-harvesting chlorophyll a/b binding protein TaLhc2 was identified. It showed subcellular localization in chloroplast, contained light responsive cis-elements, and highly expressed in green tissues and down-regulated by multiple stresses. TaLhc2 promoted the colonization of hemi-biotrophic pathogen; further analysis showed that TaLhc2 strengthened BAX-induced cell death, enhanced the ROS accumulation, and up-regulated pathogenesis-related genes; those results suggested that TaLhc2 has adverse influence on host immunity and function as a susceptible gene, thus host decreased its expression when faced with pathogen infection. RT-qPCR results showed that TaLhc2 was down-regulated by drought and salt stresses, while TaLhc2 improved the ROS accumulation under the two stresses, suggesting TaLhc2 may participate in wheat responding to abiotic stress. Additionally, TaLhc2 can increase the content of total chlorophyll and carotenoid by 1.3 % and 2.9 %, increase the net photosynthetic rate by 18 %, thus promote plant photosynthesis. Conclusively, we preliminarily deciphered the function of TaLhc2 in biotic/abiotic stresses and photosynthesis, which laid foundation for its usage in wheat breeding.


Subject(s)
Plant Proteins , Triticum , Triticum/metabolism , Chlorophyll A/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Reactive Oxygen Species/metabolism , Plants, Genetically Modified/genetics , Photosynthesis , Stress, Physiological/genetics , Gene Expression Regulation, Plant
7.
Plant Physiol Biochem ; 201: 107799, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271022

ABSTRACT

Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.


Subject(s)
Transcriptome , Zingiber officinale , Zingiber officinale/genetics , Hydrogen Peroxide , Lignin , Hormones
8.
Ying Yong Sheng Tai Xue Bao ; 34(3): 825-834, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37087667

ABSTRACT

The development and application of botanical insecticides is important for the sustainable development of green agriculture. The abuse of chemical pesticides has caused serious problems of environment and human health. Botanical insecticides have become an environment-friendly insecticides due to their nature, low toxicity, easy degradation and other advantages, which are an important field of insecticide development in the future. Although botanical insecticides have lots of advantages, there are still problems needed to be resolved, such as insecticidal plant species, impact assessment of botanical pesticide and separation and purification of active components. To excavate the resources of highly effective insecticidal plants and understand the mechanism of botanical insecticides, here we reviewed the progress of resources and active components of botanical insecticides, the mechanisms of action of botanical insecticides, the main active components and insecticidal properties of Zingiber officinale. Finally, we analyzed the difficulties faced in the research and development of botanical insecticides, prospected future directions, and discussed the active components of ginger. This review would provide reference for the deve-lopment of new botanical insecticides.


Subject(s)
Insecticides , Pesticides , Zingiber officinale , Humans , Insecticides/toxicity , Insecticides/chemistry , Plants , Agriculture
9.
Plants (Basel) ; 12(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36987019

ABSTRACT

(1) Background: Salt stress is an abiotic factor that limits maize yield and quality. A highly salt-tolerance inbred AS5 and a salt-sensitive inbred NX420 collected from Ningxia Province, China, were used to identify new genes for modulating salt resistance in maize. (2) Methods: To understand the different molecular bases of salt tolerance in AS5 and NX420, we performed BSA-seq using an F2 population for two extreme bulks derived from the cross between AS5 and NX420. Transcriptomic analysis was also conducted for AS5 and NX420 at the seedling stage after treatment with 150 mM of NaCl for 14 days. (3) Results: AS5 had a higher biomass and lower Na+ content than NX420 in the seedling stage after treatment with 150 mM NaCl for 14 days. One hundred and six candidate regions for salt tolerance were mapped on all of the chromosomes through BSA-seq using F2 in an extreme population. Based on the polymorphisms identified between both parents, we detected 77 genes. A large number of differentially expressed genes (DEGs) at the seedling stage under salt stress between these two inbred lines were detected using transcriptome sequencing. GO analysis indicated that 925 and 686 genes were significantly enriched in the integral component of the membrane of AS5 and NX420, respectively. Among these results, two and four DEGs were identified as overlapping in these two inbred lines using BSA-seq and transcriptomic analysis, respectively. Two genes (Zm00001d053925 and Zm00001d037181) were detected in both AS5 and NX420; the transcription level of Zm00001d053925 was induced to be significantly higher in AS5 than in NX420 (41.99 times versus 6.06 times after 150 mM of NaCl treatment for 48 h), while the expression of Zm00001d037181 showed no significant difference upon salt treatment in both lines. The functional annotation of the new candidate genes showed that it was an unknown function protein. (4) Conclusions: Zm00001d053925 is a new functional gene responding to salt stress in the seedling stage, which provides an important genetic resource for salt-tolerant maize breeding.

10.
Protoplasma ; 260(4): 1221-1232, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36840780

ABSTRACT

Sinopodophyllum hexandrum (Royle) T. S. Ying, an important source of podophyllotoxin (PTOX), has become a rare and endangered plant because of over-harvesting. Somatic embryogenesis (SE) is the main way of seedling rapid propagation and germplasm enhancement, but the regeneration of S. hexandrum has not been well established, and the PTOX biosynthesis abilities at different SE stages remain unclear. Therefore, it is extremely important to elucidate the SE mechanism of S. hexandrum and clarify the biosynthesis variation of PTOX. In this study, the transcriptomes of S. hexandrum at different SE stages were sequenced, the contents of PTOX and 4'-demethylepipodophyllotoxin were assayed, and the transcript expression patterns were validated by qRT-PCR. The results revealed that plant hormone (such as auxins, abscisic acid, zeatin, and gibberellins) related pathways were significantly enriched among different SE stages, indicating these plant hormones play important roles in SE of S. hexandrum; the expression levels of a series of PTOX biosynthesis related genes as well as PTOX and 4'-demethylepipodophyllotoxin contents were much higher in embryogenic callus stage than in the other stages, suggesting embryogenic callus stage has the best PTOX biosynthesis ability among different SE stages. This study will contribute to germplasm conservation and fast propagation of S. hexandrum, and facilitate the production of PTOX.


Subject(s)
Berberidaceae , Podophyllotoxin , Gene Expression Profiling , Berberidaceae/genetics , Transcriptome/genetics , Plant Growth Regulators , Plant Somatic Embryogenesis Techniques
11.
J Nanobiotechnology ; 21(1): 2, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36593514

ABSTRACT

BACKGROUND: Silica nanoparticles (SiNPs) have been demonstrated to have beneficial effects on plant growth and development, especially under biotic and abiotic stresses. However, the mechanisms of SiNPs-mediated plant growth strengthening are still unclear, especially under field condition. In this study, we evaluated the effect of SiNPs on the growth and sugar and hormone metabolisms of wheat in the field. RESULTS: SiNPs increased tillers and elongated internodes by 66.7% and 27.4%, respectively, resulting in a larger biomass. SiNPs can increase the net photosynthetic rate by increasing total chlorophyll contents. We speculated that SiNPs can regulate the growth of leaves and stems, partly by regulating the metabolisms of plant hormones and soluble sugar. Specifically, SiNPs can increase auxin (IAA) and fructose contents, which can promote wheat growth directly or indirectly. Furthermore, SiNPs increased the expression levels of key pathway genes related to soluble sugars (SPS, SUS, and α-glucosidase), chlorophyll (CHLH, CAO, and POR), IAA (TIR1), and abscisic acid (ABA) (PYR/PYL, PP2C, SnRK2, and ABF), whereas the expression levels of genes related to CTKs (IPT) was decreased after SiNPs treatment. CONCLUSIONS: This study shows that SiNPs can promote wheat growth and provides a theoretical foundation for the application of SiNPs in field conditions.


Subject(s)
Nanoparticles , Triticum , Triticum/metabolism , Silicon Dioxide , Chlorophyll , Sugars , Hormones
12.
Plants (Basel) ; 11(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36235363

ABSTRACT

DUF966 genes are widely found in monocotyledons, dicotyledons, mosses, and other species. Current evidence strongly suggests that they are involved in growth regulation and stress tolerance in crops. However, their functions in cucumbers remain unexplored. Here, cucumber CsDUF966 was systemically identified and characterized using bioinformatics. Eight CsDUF966 genes were identified in the cucumber genome. These were phylogenetically separated into three groups. All CsDUF966 proteins were hydrophilic and localized to the nucleus. Moreover, three acidic and five basic proteins were identified. Evolutionary analysis of DUF966 between cucumber and 33 other Cucurbitaceae species/cultivars revealed that most CsDUF966 genes were conserved, whereas CsDUF966_4.c and CsDUF966_7.c were positively selected among the five cucumber cultivars. Expression profiling analysis showed that CsDUF966 had variable expression patterns, and that miRNA164, miRNA166, and Csa-novel-35 were involved in the post-transcriptional regulation of CsDUF966_4.c and CsDUF966_7.c. The expression of CsDUF966_4.c and CsDUF966_7.c, which were under strong neofunctionalization selection, was strictly regulated in fruit and tissues, including seeds, pericarps, peels, and spines, suggesting that these genes are fruit growth regulators and were strongly selected during the cucumber breeding program. In conclusion, the results reveal the roles of CsDUF966s in regulating cucumber fruit development and lay the foundation for further functional studies.

13.
J Appl Microbiol ; 133(4): 2642-2654, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35892189

ABSTRACT

AIMS: The current study aimed to determine the chemical compositions of ginger extract (GE) and to assess the antibacterial activities of GE against the ginger bacterial wilt pathogen Ralstonia solanacearum and to screen their mechanisms of action. METHODS AND RESULTS: A total of 393 compounds were identified by using ultra-performance liquid chromatography and tandem-mass spectrometry. The antibacterial test indicated that GE had strong antibacterial activity against R. solanacearum and that the bactericidal effect exhibited a dose-dependent manner. The minimum inhibitory concentration and minimum bactericidal concentration of R. solanacearum were 3.91 and 125 mg/ml, respectively. The cell membrane permeability and integrity of R. solanacearum were destroyed by GE, resulting in cell content leakage, such as electrolytes, nucleic acids, proteins, extracellular adenosine triphosphate and exopoly saccharides. In addition, the activity of cellular succinate dehydrogenase and alkaline phosphatase of R. solanacearum decreased gradually with an increase in the GE concentration. Scanning electron microscopy analysis revealed that GE treatment changed the morphology of the R. solanacearum cells. Further experiments demonstrated that GE delayed or slowed the occurrence of bacterial wilt on ginger. CONCLUSIONS: GE has a significant antibacterial effect on R. solanacearum, and the antibacterial effect is concentration dependent. The GE treatments changed the morphology, destroyed membrane permeability and integrity, reduced key enzyme activity and inhibit the synthesis of the virulence factor EPS of R. solanacearum. GE significantly controlled the bacterial wilt of ginger during infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This research provides insight into the antimicrobial mechanism of GE against R. solanacearum, which will open a new application field for GE.


Subject(s)
Nucleic Acids , Ralstonia solanacearum , Solanum lycopersicum , Zingiber officinale , Adenosine Triphosphate , Alkaline Phosphatase/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Extracts , Succinate Dehydrogenase/pharmacology , Virulence Factors
14.
Plant Genome ; 15(3): e20246, 2022 09.
Article in English | MEDLINE | ID: mdl-35894660

ABSTRACT

The Lin-11, Isl-1, and Mec-3 domains (LIM) transcription factors play essential roles in regulating plant biological processes. Despite that, there is a lack of a full understanding of LIMs in wheat (Triticum aestivum L.). In this study, 28 wheat LIM s (TaLIMs) were identified and designated as TaLIM1-1A to TaLIM12-7D. The cis-regulatory element analysis showed that TaLIMs were rich in elements related to biological and abiotic stresses. Expression profiling analysis showed that certain members of TaLIMs were responsive to biotic and abiotic stresses, such as TaLIM1-1A, TaLIM3-2B, TaLIM8-4D, and TaLIM10-5D, were significantly induced by heat, drought, sodium chloride (NaCl), abscisic acid (ABA) and Fusarium graminearum stresses. Furthermore, the biological function of TaLIM8-4D was analyzed and results showed that it was subcellular localization in the nucleus and could induce weak cell death in Nicotiana benthamiana leaves. Additionally, overexpression of TaLIM8-4D could upregulate plant pathogenesis-related (PR) genes, promoting the infection of hemibiotrophic pathogen, implying that TaLIM8-4D could function as susceptible gene in the nucleus by upregulating PR genes and inducing cell death to promote the colonization of hemibiotrophic agent F. graminearum. Overall, the systematic identification, characterization, expression profiling, evolutionary, and function analyses provided the ability to understand TaLIMs and laid a foundation for the further function study of LIM family members in wheat.


Subject(s)
Sodium Chloride , Triticum , Abscisic Acid , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/metabolism , Transcription Factors/genetics , Triticum/genetics
15.
Front Plant Sci ; 13: 893495, 2022.
Article in English | MEDLINE | ID: mdl-35734245

ABSTRACT

Gene expression analysis largely improves our understanding of the molecular basis underpinning various plant biological processes. Stable reference genes play a foundational role during the normalization of gene expression levels. However, until now, there have been few reference genes suitable for ginger reverse transcription-quantitative PCR (RT-qPCR) research. In this study, 29 candidate reference genes with stable expression patterns across multiple ginger tissues and 13 commonly used reference genes were selected to design RT-qPCR primers. After amplification specificity validation, 32 candidates were selected and further evaluated by RT-qPCR using samples from various organs subjected to NaCl, drought, heat, waterlogging, and chilling stress. Four strategies, including delta-CT, BestKeeper, geNorm, and NormFinder, were used to rank the stability of reference genes, and the ranks produced by these four strategies were comprehensively evaluated by RefFinder to determine the final rank. Overall, the top three stability reference genes indicated by RefFinder were RBP > ATPase > 40S_S3. Their expression pattern correlation analysis showed that the coefficients among each pair of RBP, ATPase, and 40S_S3 were larger than 0.96, revealing consistent and stable expression patterns under various treatments. Then, the expression of three pathogenesis-related (PR) genes and seven MYB genes in rhizomes during postharvest storage and subjected to pathogen infection was normalized by RBP, ATPase, 40S_S3, RBP and ATPase, ATPase and 40S-S3, and RBP and 40S-S3. The results showed that PR and MYB genes were induced by postharvest deterioration and pathogen infection. The correlation coefficients of RBP/ATPase, RBP/40S_S3, ATPase/40S_S3, RBP and ATPase/ATPase and 40S-S3, RBP and ATPase/RBP and 40S-S3, and ATPase and 40S-S3/RBP and 40S-S3 were 0.99, 0.96, 0.99, 0.99, 1.00, and 1.00, respectively, which confirmed the stability of these three reference genes in postharvest biology studies of ginger. In summary, this study identified appropriate reference genes for RT-qPCR in ginger and facilitated gene expression studies under biotic and abiotic stress conditions.

16.
Nanomaterials (Basel) ; 12(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35564127

ABSTRACT

Silica nanoparticles (SiNPs) offer an ecofriendly and environmentally safe alternative for plant disease management. However, the mechanisms of SiNPs-induced disease resistance are largely unknown. This research evaluated the application of SiNPs in controlling the postharvest decay of ginger rhizomes inoculated with Fusarium solani. In vitro study showed that SiNP had little inhibitory effect on mycelial growth and spore germination of F. solani and did not significantly change mycelium's MDA content and SDH activity. In vivo analysis indicated that SiNPs decreased the degree of decay around the wounds and decreased the accumulation of H2O2 after long-term pathogenic infection through potentiating the activities of antioxidant enzymes such as SOD, APX, PPO, and CAT. SiNP150 increased the CHI, PAL, and GLU activity at the onset of the experiment. Moreover, SiNP150 treatment increased total phenolics contents by 1.3, 1.5, and 1.2-times after 3, 5, and 7 days of treatment, and increased total flavonoids content throughout the experiment by 9.3%, 62.4%, 26.9%, 12.8%, and 60.8%, respectively. Furthermore, the expression of selected phenylpropanoid pathway-related genes was generally enhanced by SiNPs when subjected to F. solani inoculation. Together, SiNPs can effectively reduce the fungal disease of ginger rhizome through both physical and biochemical defense mechanisms.

17.
Front Plant Sci ; 13: 816143, 2022.
Article in English | MEDLINE | ID: mdl-35371177

ABSTRACT

Postharvest deterioration of ginger rhizome caused by microorganisms or wound infections causes significant economic losses. Fusarium solani is one of the important causal agents of prevalent ginger disease soft rot across the world. The massive and continuous use of chemical fungicides in postharvest preservation pose risks to human health and produce environmental contamination. Hence, new alternative tools are required to reduce postharvest deterioration and extend the postharvest life of ginger. In this study, the use of silicon nanoparticles (SiNPs) on the storability of ginger rhizomes during postharvest storage and their resistance to Fusarium solani was investigated. The results showed that 50, 100, and 150 mg L-1 of SiNPs increased the firmness of the ginger rhizome during storage but decreased the decay severity, water loss, total color difference, and the reactive oxygen species (ROS; H2O2 and superoxide anion) accumulation. Specifically, 100 mg L-1 (SiNP100) demonstrated the best effect in the extension of postharvest life and improved the quality of the ginger rhizomes. SiNP100 application increased the activities of antioxidant enzymes (SOD and CAT) and the total phenolics and flavonoid contents, thereby reducing the ROS accumulation and malondialdehyde (MDA) content. Meanwhile, SiNP100 treatment negatively impacts the peroxidase (POD) and polyphenol oxidase (PPO) activities, which may have contributed to the lower level of lignin and decreased total color difference. SiNP100 likely decreased water loss and the transfer of water by altering the expression of aquaporin genes. Moreover, SiNP100 modulated the expression of lignin synthesis and phytopathogenic responses genes including MYB and LysM genes. Furthermore, SiNP100 inhibited Fusarium solani by preventing the penetration of hyphae into cells, thus decreasing the severity of postharvest pathogenic decay. In summary, this study revealed the physiology and molecular mechanisms of SiNPs-induced tolerance to postharvest deterioration and resistance to disease, which provides a foundation for using SiNPs resources as a promising alternative tool to maintain ginger quality and control postharvest diseases.

18.
Plant Methods ; 18(1): 11, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35081982

ABSTRACT

BACKGROUND: Plant plasma membrane transporters play essential roles during the translocation of vectorized agrochemicals. Therefore, transporters associated with phloem loading of vectorized agrochemicals have drawn increasing attention. As a model system, castor bean (Ricinus communis L.) has been widely used to detect the phloem mobility of agrochemicals. However, there is still a lack of an efficient protocol for the Ricinus seedling model system that can be directly used to investigate the recognition and phloem loading functions of plasmalemma transporters toward vectorized agrochemicals. RESULTS: Here, using vacuum infiltration strategy, we overexpressed the coding gene for enhanced green fluorescent protein (eGFP) in R. communis seedlings by Agrobacterium tumefaciens-mediated transformation system. Strong fluorescence signals were observed in leaves, demonstrating that exogenous genes can be successfully overexpressed in seedlings. Subsequently, gene expression time and vacuum infiltration parameters were optimized. Observation of fluorescence and qRT-PCR analysis showed that eGFP strength and expression level reached a peak at 72 h after overexpression in seedlings. Parameter optimization showed Agrobacterium concentration at OD600 = 1.2, and infiltration for 20 min (0.09 MPa), return to atmospheric pressure, and then infiltration for another 20 min, were the suitable transformation conditions. To test the application of vacuum agroinfiltration in directly examining the loading functions of plasma membrane transporters to vectorized agrochemicals in seedlings, two LHT (lysine/histidine transporter) genes, RcLHT1 and RcLHT7, were overexpressed. Subcellular localization showed the strong fluorescent signals of the fusion proteins RcLHT1-eGFP and RcLHT7-eGFP were observed on the cell membrane of mesophyll cells, and their relative expression levels determined by qRT-PCR were up-regulated 47- and 52-fold, respectively. Furthermore, the concentrations of L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) in phloem sap collected from seedling sieve tubes were significantly increased 1.9- and 2.3-fold after overexpression of RcLHT1 and RcLHT7, respectively, implying their roles in recognition and phloem loading of L-Val-PCA. CONCLUSIONS: We successfully constructed a transient expression system in Ricinus seedlings and laid the foundation for researchers to directly investigate the loading functions of plasma membrane transporters to vectorized agrochemicals in the Ricinus system.

19.
Plant Genome ; 15(1): e20167, 2022 03.
Article in English | MEDLINE | ID: mdl-34741493

ABSTRACT

Metal-tolerance proteins (MTPs) are divalent cation transporters and play fundamental roles in plant metal tolerance and ion homeostasis. Despite that, a systematic investigation of MTPs in Cucurbitacea is still lacking. In this study, 142 MTPs were identified from 11 released genomes of 8 Cucurbitaceae species. They were phylogenetically separated into three clusters (Zn-cation diffusion facilitator proteins [CDFs], Fe/Zn-CDFs, and Mn-CDFs) and further subdivided into seven groups (G1, G5, G6, G7, G8, G9, and G12). Characterization analysis revealed that most MTPs were plasma membrane-located hydrophobic proteins. Motif and exon/intron analysis showed that members in the same group contained similar conserved motifs and gene structures. Moreover, 98 pairs of segmental-like duplication events were found. The nonsynonymous/synonymous substitution ratios between each pair were less than 1, implying that Cucurbitaceae MTPs were under purification selection. Expression profiling suggested that several MTP genes, such as CsCLMTP1, CmeMTP3, LsMTP3, and Cl97103MTP3, were constitutively expressed in corresponding Cucurbitaceae species, and their expression levels were not significantly altered by NaCl, drought, or pathogen infection. The expression patterns of cucumber MTP genes under Zn2+ , Cu2+ , Mn2+ , and Cd2+ stress were studied by quantitative real-time polymerase chain reaction and the results showed that these MTPs were induced by at least one metal ion, suggesting their involvement in metal tolerance or transportation. The identification and comprehensive investigation of MTP family members will provide a basis for the analysis of ion transport functions and ion tolerance mechanisms of Cucurbitaceae MTPs.


Subject(s)
Cation Transport Proteins , Cucurbitaceae , Amino Acid Sequence , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
20.
PeerJ ; 9: e10701, 2021.
Article in English | MEDLINE | ID: mdl-33552727

ABSTRACT

The Growth-Regulating Factor (GRF) family encodes a type of plant-specific transcription factor (TF). GRF members play vital roles in plant development and stress response. Although GRF family genes have been investigated in a variety of plants, they remain largely unstudied in bread wheat (Triticum aestivum L.). The present study was conducted to comprehensively identify and characterize the T. aestivum GRF (TaGRF) gene family members. We identified 30 TaGRF genes, which were divided into four groups based on phylogenetic relationship. TaGRF members within the same subgroup shared similar motif composition and gene structure. Synteny analysis suggested that duplication was the dominant reason for family member expansion. Expression pattern profiling showed that most TaGRF genes were highly expressed in growing tissues, including shoot tip meristems, stigmas and ovaries, suggesting their key roles in wheat growth and development. Further qRT-PCR analysis revealed that all 14 tested TaGRFs were significantly differentially expressed in responding to drought or salt stresses, implying their additional involvement in stress tolerance of wheat. Our research lays a foundation for functional determination of TaGRFs, and will help to promote further scrutiny of their regulatory network in wheat development and stress response.

SELECTION OF CITATIONS
SEARCH DETAIL
...