Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(1): 105556, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097188

ABSTRACT

A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.


Subject(s)
Macrophages, Alveolar , Pluripotent Stem Cells , Swine , Animals , Endocytosis , Hematopoiesis/drug effects , Lipopolysaccharides/pharmacology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Mesoderm/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Porcine respiratory and reproductive syndrome virus/physiology , Signal Transduction/drug effects , Swine/virology , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Time Factors
2.
Nat Chem Biol ; 19(11): 1299-1300, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37592156
3.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 192-203, 2023 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-36738210

ABSTRACT

As main recipient cells for porcine reproductive and respiratory syndrome virus (PRRSV), porcine alveolar macrophage (PAM) are involved in the progress of several highly pathogenic virus infections. However, due to the fact that the PAM cells can only be obtained from primary tissues, research on PAM-based virus-host interactions remains challenging. The improvement of induced pluripotent stem cells (iPSCs) technology provides a new strategy to develop IPSCs-derived PAM cells. Since the CD163 is a macrophage-specific marker and a validated receptor essential for PRRSV infection, generation of stable porcine induced pluripotent stem cells lines containing CD163 reporter system play important roles in the investigation of IPSCs-PAM transition and PAM-based virus-host interaction. Based on the CRISPR/Cas9- mediated gene editing system, we designed a sgRNA targeting CD163 locus and constructed the corresponding donor vectors. To test whether this reporter system has the expected function, the reporter system was introduced into primary PAM cells to detect the expression of RFP. To validate the low effect on stem cell pluripotency, we generated porcine iPSC lines containing CD163 reporter and assessed the pluripotency through multiple assays such as alkaline phosphatase staining, immunofluorescent staining, and EdU staining. The red-fluorescent protein (RFP) expression was detected in CD163-edited PAM cells, suggesting that our reporter system indeed has the ability to reflect the expression of gene CD163. Compared with wild-type (WT) iPSCs, the CD163 reporter-iPSCs display similar pluripotency-associated transcription factors expression. Besides, cells with the reporter system showed consistent cell morphology and proliferation ability as compared to WT iPSCs, indicating that the edited-cells have no effect on stem cell pluripotency. In conclusion, we generated porcine iPSCs that contain a CD163 reporter system. Our results demonstrated that this reporter system was functional and safe. This study provides a platform to investigate the iPS-PAM development and virus-host interaction in PAM cells.


Subject(s)
Induced Pluripotent Stem Cells , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Induced Pluripotent Stem Cells/metabolism , Receptors, Cell Surface/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Porcine respiratory and reproductive syndrome virus/genetics
4.
J Cell Physiol ; 237(12): 4531-4543, 2022 12.
Article in English | MEDLINE | ID: mdl-36288570

ABSTRACT

Porcine embryonic fibroblasts (PEFs) can be directly reprogrammed into porcine induced pluripotent stem cells (piPSCs). However, the reprogramming process is generally lengthy and inefficient. Here, we established a fast and efficient induction system of piPSCs from porcine Sertoli cells (SCs) via forced expression of pig Yamanaka factors. The alkaline phosphatase (AP)-positive colonies from SCs developed on Day 3 after lentivirus infection, and were expanded and then picked up on Day 7, whereas reprogramming process from PEFs did not show any colonies in the same period. The picked piPSCs strongly expressed pluripotent genes, had the differentiation capacity to three germ layers, and could be also induced into primordial germ cell-like cells. Screening for transcription factor combinations showed that POU class 5 homeobox 1 (OCT4) is the core factor for AP-positive colony formation, and two factors (OCT4 and c-MYC) could successfully reprogram SCs into piPSCs. We then compared the RNA-sequencing data of piPSCs derived from SCs and PEFs, and found that the most significant difference was the activation of Transforming Growth Factor ß signaling pathway. We also compared the RNA levels of SCs and PEFs, and found that SCs exhibited higher Wnt signaling activity and Bone Morphogenetic Protein 4 expression than PEFs, which might be correlated with higher cell proliferation rate and reprogramming efficiency. In summary, the data demonstrated that starting cell sources of piPSCs significantly affect reprogramming dynamics and SCs could serve as cell sources for efficient reprogramming.


Subject(s)
Cellular Reprogramming , Fibroblasts , Induced Pluripotent Stem Cells , Sertoli Cells , Animals , Male , Cell Differentiation , Cells, Cultured , Fibroblasts/cytology , Induced Pluripotent Stem Cells/cytology , RNA/genetics , Sertoli Cells/cytology , Swine
5.
Proc Natl Acad Sci U S A ; 119(40): e2204716119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161929

ABSTRACT

Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.


Subject(s)
Enhancer Elements, Genetic , Pluripotent Stem Cells , Animals , Cell Cycle Proteins/metabolism , Enhancer Elements, Genetic/genetics , Eutheria/genetics , Female , Humans , Mice , Nuclear Proteins/metabolism , Placenta/metabolism , Pluripotent Stem Cells/metabolism , Pregnancy , Swine , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Reprod Domest Anim ; 57(2): 200-209, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34748668

ABSTRACT

Porcine spermatogonia stem cells (pSSCs) are the only type of somatic stem cell that can pass genetic information to the successive generations. Little is known about pSSCs vitality in vitro, and due to their increasing importance in stem cell research, here, we optimized a protocol to culture pSSCs and explored their potential fate in vitro. Utilizing a feeder-free culture system with a 2D peptide-coating and small chemical molecules (including CHIR99021, Repsox, vitamin C, folic acid, and CD lipid concentrate), we were able to prolong the culture time of pSSCs by at least three months compared with previous methods. Moreover, we found that pSSCs could proliferate and self-renew in the seminiferous tubules of infertile mice. However, they could not perform meiosis. Our study shows that this feeder-free culture system optimizes cell culture and may facilitate advanced research on SSC biology and genetic manipulation of germ cells.


Subject(s)
Adult Germline Stem Cells , Spermatogonia , Animals , Male , Mice , Peptides , Seminiferous Tubules , Spermatogenesis , Stem Cells , Swine
7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884759

ABSTRACT

The establishment of porcine pluripotent stem cells (piPSCs) is critical but remains challenging. All piPSCs are extremely sensitive to minor perturbations of culture conditions and signaling network. Inhibitors, such as CHIR99021 and XAV939 targeting the WNT signaling pathway, have been added in a culture medium to modify the cell regulatory network. However, potential side effects of inhibitors could confine the pluripotency and practicability of piPSCs. This study aimed to investigate the roles of AXIN, one component of the WNT pathway in piPSCs. Here, porcine AXIN1 and AXIN2 genes were knocked-down or overexpressed. Digital RNA-seq was performed to explore the mechanism of cell proliferation and apoptosis. We found that (1) overexpression of the porcine AXIN2 gene significantly reduced survival and negatively impacted the pluripotency of piPSCs, and (2) knockdown of AXIN2, a negative effector of the WNT signaling pathway, enhanced the expression of genes involved in cell cycle but reduced the expression of genes related to cell differentiation, death, and apoptosis.


Subject(s)
Axin Protein/physiology , Induced Pluripotent Stem Cells/physiology , Animals , Apoptosis/genetics , Apoptosis/physiology , Axin Protein/deficiency , Axin Protein/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Proliferation/physiology , Cell Survival/genetics , Cell Survival/physiology , Cells, Cultured , Cyclin D1/genetics , Cyclin D1/metabolism , Gene Knockdown Techniques , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Models, Biological , Pyridines/pharmacology , Pyrimidines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq , Swine , Up-Regulation , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , beta Catenin/genetics , beta Catenin/metabolism
8.
Front Cell Dev Biol ; 9: 712224, 2021.
Article in English | MEDLINE | ID: mdl-34616727

ABSTRACT

Porcine-induced pluripotent stem cells (piPSCs) could serve as a great model system for human stem cell preclinical research. However, the pluripotency gene network of piPSCs, especially the function for the core transcription factor estrogen-related receptor beta (ESRRB), was poorly understood. Here, we constructed ESRRB-overexpressing piPSCs (ESRRB-piPSCs). Compared with the control piPSCs (CON-piPSCs), the ESRRB-piPSCs showed flat, monolayered colony morphology. Moreover, the ESRRB-piPSCs showed greater chimeric capacity into trophectoderm than CON-piPSCs. We found that ESRRB could directly regulate the expressions of trophoblast stem cell (TSC)-specific markers, including KRT8, KRT18 and CDX2, through binding to their promoter regions. Mutational analysis proved that the N-terminus zinc finger domain is indispensable for ESRRB to regulate the TSC markers. Furthermore, this regulation needs the participation of OCT4. Accordingly, the cooperation between ESRRB and OCT4 facilitates the conversion from pluripotent state to the trophoblast-like state. Our results demonstrated a unique and crucial role of ESRRB in determining piPSCs fate, and shed new light on the molecular mechanism underlying the segregation of embryonic and extra-embryonic lineages.

9.
FASEB J ; 35(6): e21664, 2021 06.
Article in English | MEDLINE | ID: mdl-34042215

ABSTRACT

The pluripotency gene regulatory network of porcine induced pluripotent stem cells(piPSCs), especially in epigenetics, remains elusive. To determine the biological function of epigenetics, we cultured piPSCs in different culture conditions. We found that activation of pluripotent gene- and pluripotency-related pathways requires the erasure of H3K9 methylation modification which was further influenced by mouse embryonic fibroblast (MEF) served feeder. By dissecting the dynamic change of H3K9 methylation during loss of pluripotency, we demonstrated that the H3K9 demethylases KDM3A and KDM3B regulated global H3K9me2/me3 level and that their co-depletion led to the collapse of the pluripotency gene regulatory network. Immunoprecipitation-mass spectrometry (IP-MS) provided evidence that KDM3A and KDM3B formed a complex to perform H3K9 demethylation. The genome-wide regulation analysis revealed that OCT4 (O) and SOX2 (S), the core pluripotency transcriptional activators, maintained the pluripotent state of piPSCs depending on the H3K9 hypomethylation. Further investigation revealed that O/S cooperating with histone demethylase complex containing KDM3A and KDM3B promoted pluripotency genes expression to maintain the pluripotent state of piPSCs. Together, these data offer a unique insight into the epigenetic pluripotency network of piPSCs.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , Induced Pluripotent Stem Cells/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/metabolism , Animals , DNA Methylation , Epigenesis, Genetic , Induced Pluripotent Stem Cells/cytology , Jumonji Domain-Containing Histone Demethylases/genetics , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics , Swine
10.
Zool Res ; 42(3): 377-388, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33998185

ABSTRACT

LIN28A, an RNA-binding protein, plays an important role in porcine induced pluripotent stem cells (piPSCs). However, the molecular mechanism underlying the function of LIN28A in the maintenance of pluripotency in piPSCs remains unclear. Here, we explored the function of LIN28A in piPSCs based on its overexpression and knockdown. We performed total RNA sequencing (RNA-seq) of piPSCs and detected the expression levels of relevant genes by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence staining. Results indicated that piPSC proliferation ability decreased following LIN28A knockdown. Furthermore, when LIN28A expression in the shLIN28A2 group was lower (by 20%) than that in the negative control knockdown group ( shNC), the pluripotency of piPSCs disappeared and they differentiated into neuroectoderm cells. Results also showed that LIN28A overexpression inhibited the expression of DUSP (dual-specificity phosphatases) family phosphatases and activated the mitogen-activated protein kinase (MAPK) signaling pathway. Thus, LIN28A appears to activate the MAPK signaling pathway to maintain the pluripotency and proliferation ability of piPSCs. Our study provides a new resource for exploring the functions of LIN28A in piPSCs.


Subject(s)
Dual-Specificity Phosphatases/metabolism , Induced Pluripotent Stem Cells/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Proliferation , Dual-Specificity Phosphatases/genetics , Gene Knockdown Techniques , HEK293 Cells , Humans , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/genetics , RNA-Binding Proteins/genetics , Swine
11.
Cells Dev ; 166: 203665, 2021 06.
Article in English | MEDLINE | ID: mdl-33994350

ABSTRACT

MicroRNAs are important regulators in stem cells, which involve in gene regulation, including cell proliferation, differentiation and apoptosis. As an important one, miR-34c participates in various processes by targeting protein-coding genes. It is generally considered as a tumor suppressor and cell adhesion inhibitor. However, whether miR-34c has effects on pluripotent stem cells is not clear. Here, by mir-34c mimics transfection, the function of miR-34c on porcine induced pluripotent stem cell (piPSC)-like cells was investigated. Bioinformatics analyses showed that c-Myc is miR-34c's candidate target, which was confirmed by dual Luciferase assay. The knockout of miR-34c indicated that mir-34c affects the proliferation and pluripotency of piPSC-like cells by targeting c-Myc. Our study explored the regulatory mechanism of miR-34c on piPSC-like cells, providing a reference for the establishment of true porcine PSCs.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Base Sequence , Cell Line , Cell Proliferation/genetics , Gene Expression Regulation , Mice , MicroRNAs/genetics , Swine
12.
Cell Prolif ; 54(1): e12932, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33107129

ABSTRACT

OBJECTIVES: The establishment of porcine pluripotent stem cells (pPSCs) is still a critical topic. However, all pPSCs were failed to contribute to efficient chimeric pig and were extremely sensitive to changes of culture conditions. This study aimed to investigate the role of BCL2 in pPSCs and further explain the mechanism. MATERIALS AND METHODS: Porcine BCL2 gene was cloned and overexpressed in porcine induce pluripotent stem cells (piPSCs). Digital RNA-seq was performed to explain the mechanism of anti-apoptosis. Finally, the cells carrying BCL2 were injected into mouse early embryo to evaluate its chimeric ability. RESULTS: Here, we found that overexpression of porcine BCL2 gene significantly improved the survivability of piPSCs and the efficiency of embryonic chimerism, and did not wreck the pluripotency of piPSCs. Furthermore, the Digital RNA-seq analysis revealed that BCL2, as a downstream gene of the PI3K signal pathway, enhanced the expression of PI3K signal pathway receptors, such as FGFR2, and further promoted oxidoreductases activity and lipid metabolism, thus maintaining the survival and pluripotency of piPSCs. CONCLUSION: Our data not only suggested that porcine BCL2 gene could enhance the survivability and chimeric ability of pPSCs, but also explained the positive feedback mechanism in this process, providing strong support for the chimeric experiment of pPSCs.


Subject(s)
Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Animals , Female , HEK293 Cells , Humans , Mice , Mice, Inbred Strains , Pluripotent Stem Cells/cytology , Pregnancy , Proto-Oncogene Proteins c-bcl-2/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Swine
13.
Cell Cycle ; 18(23): 3351-3364, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31594448

ABSTRACT

Spermatogenesis is an important physiological process associated with male infertility. As a kind of post-transcriptional regulation, RNA editings (REs) change the genetic information at the mRNA level. But whether there are REs and what's the role of REs during the process are still unclear. In this study, we integrated published RNA-Seq datasets and established a landscape of RNA REs during the development of mouse spermatogenesis. Totally, 7530 editing sites occurred in 2012 genes among all types of male germ cells were found, these sites enrich on some regions of chromosomes, including chromosome 17 and both ends of chromosome Y. We also found about half of the REs in CDSs can cause amino acids changes. Some non-synonymous REs which exist in specific genes may play important roles in spermatogenesis. Finally, we verified a non-synonymous A-to-I RNA editing site in Cog3 and a stoploss editing in Tssk6 during spermatogenesis. In short, we systematically analyzed the dynamic landscape of RNA editing at different stages of spermatogenesis.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Infertility, Male/genetics , Spermatogenesis/genetics , Animals , Germ Cells/growth & development , Germ Cells/pathology , High-Throughput Nucleotide Sequencing , Humans , Infertility, Male/pathology , Male , Mice , RNA Editing/genetics , RNA, Messenger/genetics
14.
Cell Prolif ; 52(3): e12591, 2019 May.
Article in English | MEDLINE | ID: mdl-30896067

ABSTRACT

OBJECTIVES: To date, many efforts have been made to establish porcine embryonic stem (pES) cells without success. Extraembryonic endoderm (XEN) cells can self-renew and differentiate into the visceral endoderm and parietal endoderm. XEN cells are derived from the primitive endoderm of the inner cell mass of blastocysts and may be an intermediate state in cell reprogramming. MATERIALS AND METHODS: Porcine XEN cells (pXENCs) were generated from porcine pluripotent stem cells (pPSCs) and were characterized by RNA sequencing and immunofluorescence analyses. The developmental potential of pXENCs was investigated in chimeric mouse embryos. RESULTS: Porcine XEN cells derived from porcine pPSCs were successfully expanded in N2B27 medium supplemented with bFGF for least 30 passages. RNA sequencing and immunofluorescence analyses showed that pXENCs expressed the murine and canine XEN markers Gata6, Gata4, Sox17 and Pdgfra but not the pluripotent markers Oct4, Sox2 and TE marker Cdx2. Moreover, these cells contributed to the XEN when injected into four-cell stage mouse embryos. Supplementation with Chir99021 and SB431542 promoted the pluripotency of the pXENCs. CONCLUSIONS: We successfully derived pXENCs and showed that supplementation with Chir99021 and SB431542 confer them with pluripotency. Our results provide a new resource for investigating the reprogramming mechanism of porcine-induced pluripotent stem cells.


Subject(s)
Endoderm/cytology , Endoderm/embryology , Swine/embryology , Animals , Cell Culture Techniques , Cell Differentiation , Cell Line , Coculture Techniques , Dogs , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Gene Expression , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Sequence Analysis, RNA , Signal Transduction , Swine/genetics , Swine/metabolism , Transplantation Chimera
15.
Appl Biochem Biotechnol ; 189(1): 26-36, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30859452

ABSTRACT

Since the birth of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, the new genome engineering technology has become a hot topic in the scientific community. However, for swine, the system of pig cells' homology directed repair (HDR) is generally unstable and costly. Here, we aim to make knock-in of porcine cells more realizable. The Rosa26 locus was chosen for gene editing. Through the optimization of strategy, an efficient sgRNA was selected by TIDE analysis. Correspondingly, a vector system was constructed for gene insertion in pRosa26 locus by homologous recombination. A large percentage of cells whose gene is edited easily result in apoptosis. To improve the positive rate, culturing systems have been optimized. Sequence alignment and nuclear transfer confirmed that we got two knock-in cell lines and transgene primary porcine fetal fibroblasts (PFFs) successfully. Results showed that the gene editing platform we used can obtain genetically modified pig cells stably and efficiently. This system can contribute to pig gene research and production of transgenic pigs.


Subject(s)
CRISPR-Cas Systems , Animals , Cell Line , Gene Editing , Swine , Transgenes
16.
Reproduction ; 154(1): 23-34, 2017 07.
Article in English | MEDLINE | ID: mdl-28420800

ABSTRACT

Histone methyltransferase SETDB1 suppresses gene expression and modulates heterochromatin formation through H3K9me2/3. Previous studies have revealed that SETDB1 catalyzes lysine 9 of histone H3 tri-methylation and plays essential roles in maintaining the survival of embryonic stem cells and spermatogonial stem cells in mice. However, the function of SETDB1 in porcine male germ cells remains unclear. The aim of the present study was to reveal the expression profile and function of SETDB1 in porcine germ cells. SETDB1 expression gradually increased during testis development. SETDB1 was strongly localized in gonocytes. Knockdown of SETDB1 gene expression led to gonocyte apoptosis and a decrease in H3K27me3, but no significant change in H3K9me3. These observations suggested that SETDB1 is a novel epigenetic regulator of porcine male germ cells, and contributes to the maintenance of gonocyte survival in pigs, probably due to the regulation of H3K27me3 rather than H3K9me3. These findings will provide a theoretical basis for the future study of epigenetic regulation of spermatogenesis.


Subject(s)
Adult Germline Stem Cells/physiology , Cell Survival/physiology , Histone-Lysine N-Methyltransferase/physiology , Sus scrofa , Animals , Animals, Newborn , Apoptosis , Epigenesis, Genetic , Gene Expression , Gene Knockdown Techniques , Histone Demethylases/analysis , Histone Demethylases/physiology , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/analysis , Histone-Lysine N-Methyltransferase/genetics , Male , Spermatogenesis/physiology , Testis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...