Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 378: 114820, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789025

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss, cognitive impairment, and behavioral and psychological symptoms of dementia. The limited efficacy of drugs for the treatment of neurodegenerative diseases reflects their complex etiology and pathogenesis. A novel in vitro model may help to bridge the gap between existing preclinical animal models and human clinical trials, thus identifying promising therapeutic targets that can be explored in upcoming clinical trials. By assisting in the identification of the mechanism of action and potential dangers, in vitro testing can also shorten the time and expense of translation. AIM: As a result of these factors, our objective is to develop a powerful and informative cellular model of AD within a short period of time. Through triggering the MAPK and NF-κß signaling pathways with the aid of small chemical compounds (PAF C-16 and BetA), respectively, in mouse microglial (SIM-A9) and neuroblast Neuro-2a (N2a) cell lines. RESULTS: PAF C-16, initiated an activation effect at a concentration of 3.12 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. BetA, activated the NF-κß pathway with a concentration of 12.5 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. The combination of the activator chemicals provided suitable activation for MEK1/2-ERK and NF-κß in more than three subcultures. Activators significantly initiate APP and MAPT gene expression, as well as the expression of proteins APP, ß. Amyloid, tau, and p-tau. The activation of the targeted pathways leads to significant morphological changes. CONCLUSION: We can infer that the MEK1/2-ERK and NF-κß pathways, respectively, are directly activated by the PAF C-16 and BetA chemicals. The activation of MEK1/2-ERK pathway results in the activation of the APP gene, which in turn activates the ß. Amyloid protein, which in turn results in plaque. Furthermore, NF-κß activation results in the activation of the MAPT gene, which leads to Tau and p-Tau protein activation, which ultimately results in tangles. This can be put into practice in just three days, with a high level of activity and stability that is passed down to the next three generations (subculture), with significant morphological changes. In microglial and neuroblast cell lines, we were successful in creating a novel AD-cell model.


Subject(s)
Alzheimer Disease , Microglia , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Microglia/metabolism , Microglia/drug effects , NF-kappa B/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Humans , Cell Line , Dose-Response Relationship, Drug
2.
Int J Biol Sci ; 19(16): 5187-5203, 2023.
Article in English | MEDLINE | ID: mdl-37928259

ABSTRACT

Periodontitis is a highly prevalent chronic inflammatory disease with an exaggerated host immune response, resulting in periodontal tissue destruction and potential tooth loss. The long non-coding RNA, LncR-ANRIL, located on human chromosome 9p21, is recognized as a genetic risk factor for various conditions, including atherosclerosis, periodontitis, diabetes, and cancer. LncR-APDC is an ortholog of ANRIL located on mouse genome chr4. This study aims to comprehend the regulatory role of lncR-APDC in periodontitis progression. Our experimental findings, obtained from lncR-APDC gene knockout (KO) mice with induced experimental periodontitis (EP), revealed exacerbated bone loss and disrupted pro-inflammatory cytokine regulation. Downregulation of osteogenic differentiation occurred in bone marrow stem cells harvested from lncR-APDC-KO mice. Furthermore, single-cell RNA sequencing of periodontitis gingival tissue revealed alterations in the proportion and function of immune cells, including T and B cells, macrophages, and neutrophils, due to lncR-APDC silencing. Our findings also unveiled a previously unidentified epithelial cell subset that is distinctively presenting in the lncR-APDC-KO group. This epithelial subset, characterized by the positive expression of Krt8 and Krt18, engages in interactions with immune cells through a variety of ligand-receptor pairs. The expression of Tff2, now recognized for its role in chronic inflammatory conditions, exhibited a notable increase across various tissue and cell types in lncR-APDC deficient mice. Additionally, our investigation revealed the potential for a direct binding interaction between lncR-APDC and Tff2. Intra-gingival administration of AAV9-lncR-APDC was shown to have therapeutic effects in the EP model. In conclusion, our results suggest that lncR-APDC plays a critical role in the progression of periodontal disease and holds therapeutic potential for periodontitis. Furthermore, the presence of the distinctive epithelial subpopulation and significantly elevated Tff2 levels in the lncR-APDC-silenced EP model offer new perspectives on the epigenetic regulation of periodontitis pathogenesis.


Subject(s)
Periodontitis , RNA, Long Noncoding , Animals , Humans , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Osteogenesis , Epigenesis, Genetic/genetics , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Cytokines/metabolism , Mice, Knockout
3.
RNA Biol ; 20(1): 836-846, 2023 01.
Article in English | MEDLINE | ID: mdl-37953645

ABSTRACT

The long noncoding RNA (lncR) ANRIL in the human genome is an established genetic risk factor for atherosclerosis, periodontitis, diabetes, and cancer. However, the regulatory role of lncR-ANRIL in bone and adipose tissue metabolism remains unclear. To elucidate the function of lncRNA ANRIL in a mouse model, we investigated its ortholog, AK148321 (referred to as lncR-APDC), located on chr4 of the mouse genome, which is hypothesized to have similar biological functions to ANRIL. We initially revealed that lncR-APDC in mouse bone marrow cells (BMSCs) and lncR-ANRIL in human osteoblasts (hFOBs) are both increased during early osteogenesis. Subsequently, we examined the osteogenesis, adipogenesis, osteoclastogenesis function with lncR-APDC deletion/overexpression cell models. In vivo, we compared the phenotypic differences in bone and adipose tissue between APDC-KO and wild-type mice. Our findings demonstrated that lncR-APDC deficiency impaired osteogenesis while promoting adipogenesis and osteoclastogenesis. Conversely, the overexpression of lncR-APDC stimulated osteogenesis, but impaired adipogenesis and osteoclastogenesis. Furthermore, KDM6B was downregulated with lncR-APDC deficiency and upregulated with overexpression. Through binding-site analysis, we identified miR-99a as a potential target of lncR-APDC. The results suggest that lncR-APDC exerts its osteogenic function via miR-99a/KDM6B/Hox pathways. Additionally, osteoclasto-osteogenic imbalance was mediated by lncR-APDC through MAPK/p38 and TLR4/MyD88 activation. These findings highlight the pivotal role of lncR-APDC as a key regulator in bone and fat tissue metabolism. It shows potential therapeutic for addressing imbalances in osteogenesis, adipogenesis, and osteoclastogenesis.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Bone and Bones/metabolism , Osteogenesis/genetics , Adipose Tissue/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Jumonji Domain-Containing Histone Demethylases
SELECTION OF CITATIONS
SEARCH DETAIL
...