Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 37(12): e23510, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700718

ABSTRACT

Recent years have witnessed increasing studies on the effect of epigenetic silencing of genes in the progression of chronic lymphocytic leukemia (CLL). This study investigates whether the nucleotide binding oligomerization domain containing 2 (NOD2) participates in the cell apoptosis and drug resistance of CLL cells. Cells were treated with adriamycin (ADR), etoposide, aclacinomycin and daunorubicin. After treatment, drug resistance and cell proliferation were examined to detect the inhibitory effect of ADR on cell proliferation; flow cytometry to identify ADR accumulation, the cell cycle distribution and apoptosis after transfection, and rhodamine 123 accumulation and efflux tests to assess P-glycoprotein (P-gp) function. NOD2 silencing or inhibition of the nuclear factor kappa-B (NF-κB) signaling pathway suppressed the multidrug resistance level in CLL, the inhibition rate, and cell proliferation caused by ADR at concentrations of approximately 0.25-1.5 µmol/L. Greater accumulation of ADR was observed in the CLL-AAT cell line than in the CLL-AAT/A02 cell line, but NOD2 silencing or inhibition of the NF-κB signaling pathway further increased the accumulation of ADR drugs in the CLL-AAT cell line and inhibited the drug efflux pump function of P-gp. Additionally, NOD2 silencing or NF-κB signaling pathway inhibition increased the apoptotic rate. The results of this study indicate that NOD2 promotes cell apoptosis and reduces the drug resistance of CLL by inhibiting the NF-κB signaling pathway.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , NF-kappa B , Humans , NF-kappa B/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Drug Resistance, Neoplasm , Signal Transduction , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Apoptosis , ATP Binding Cassette Transporter, Subfamily B, Member 1 , ATP Binding Cassette Transporter, Subfamily B/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/pharmacology
2.
Front Oncol ; 12: 904614, 2022.
Article in English | MEDLINE | ID: mdl-35814424

ABSTRACT

Background: With the unveiling of new mechanisms and the advent of new drugs, the prognosis of diffuse large B-cell lymphoma (DLBCL) becomes promising, but some patients still progress to the relapse or refractory stage. Necroptosis, as a relatively novel programmed cell death, is involved in the development of multiple tumors. There are no relevant studies on the prognostic significance of necroptosis in DLBCL to date. Methods: We identified the differential necroptosis-related genes (NRGs) by comparing the DLBCL and normal control in GSE12195 and GSE56315 datasets. TCGA DLBC and GSE10846 containing clinical information and microarray expression profiling were merged as the entire cohort. We performed consensus clusters based on NRGs and two clusters were obtained. Kaplan-Meier (K-M) survival analysis, GSVA, GO, KEGG, and ssGSEA were used to analyze the survival, function, and immune microenvironment between two clusters. With LASSO and proportional hazard model construction, we identified differentially expressed genes (DEGs) between NRG clusters, calculated the risk score, established a prognostic model, and validated its value by calibration and ROC curves. The entire cohort was divided into the training and test cohort, and GSE87371 was included as an external validation cohort. K-M, copy number variation, tumor mutation burden, and drug sensitivity were also analyzed. Results: We found significant differences in prognosis between the two NRG clusters. Cluster A with a poor prognosis had a decreased expression of NRGs and a relatively suppressed immune microenvironment. GSVA analysis indicated that cluster A was related to the downregulation of the TGF-ß signaling pathway and the activation of the Notch signaling pathway. The risk score had an accurate predictive ability. The nomogram could help predict the survival probability of DLBCL patients in the entire cohort and the external validation cohort. The area under the curve (AUC) of the nomogram, risk score, and International Prognostic Index was 0.723, 0.712, and 0.537, respectively. γ/δ T cells and Macrophage 1 cells decreased while Macrophage 2 cells and Natural Killer resting cells increased in the high-risk group. In addition, the high-risk group was more sensitive to the PI3K inhibitor and the PDK inhibitor. Conclusion: We explored the potential role of necroptosis in DLBCL from multiple perspectives and provided a prognostic nomogram for the survival prediction of DLBCL. Necroptosis was downregulated and was correlated with an immunosuppressed tumor microenvironment and poor prognosis in DLBCL. Our study may deepen the understanding and facilitate the development of new therapy targets for DLBCL.

3.
Mol Biotechnol ; 64(12): 1419-1430, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35704163

ABSTRACT

Hairy and enhancer of split homolog-1 (HES1), regulated by the Notch, has been reported to play important roles in the immune response and cancers, such as leukemia. In this study, we aim to explore the effect of HES1-mediated Notch1 signaling pathway in chronic lymphocytic leukemia (CLL). Reverse transcription quantitative polymerase chain reaction and Western blot assay were conducted to determine the expression of HES1, Notch1, and PTEN in B lymphocytes of peripheral blood samples of 60 CLL patients. We used lentivirus-mediated overexpression or silencing of HES1 and the Notch1 signaling pathway inhibitor, MW167, to detect the interaction among HES1, Notch1, and PTEN in CLL MEC1 and HG3 cells. MTT assay and flow cytometry were employed for detection of biological behaviors of CLL cells. HES1 and Notch1 showed high expression, but PTEN displayed low expression in B lymphocytes of peripheral blood samples of patients with CLL in association with poor prognosis. HES1 bound to the promoter region of PTEN and reduced PTEN expression. Overexpression of HES1 activated the Notch1 signaling pathway, thus promoting the proliferation of CLL cells, increasing the proportion of cells arrested at the S phase and limiting the apoptosis of CLL cells. Collectively, HES1 can promote activation of the Notch1 signaling pathway to cause PTEN transcription inhibition and the subsequent expression reduction, thereby promoting the proliferation and inhibiting the apoptosis of CLL cells.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Apoptosis , Cell Proliferation , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , PTEN Phosphohydrolase/genetics , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...