Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3098, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248234

ABSTRACT

During the processes of rice domestication and improvement, a trade-off effect between grain number and grain weight was a major obstacle for increasing yield. Here, we identify a critical gene COG1, encoding the transcription factor OsMADS17, with a 65-bp deletion in the 5' untranslated region (5' UTR) presented in cultivated rice increasing grain number and grain weight simultaneously through decreasing mRNA translation efficiency. OsMADS17 controls grain yield by regulating multiple genes and that the interaction with one of them, OsAP2-39, has been characterized. Besides, the expression of OsMADS17 is regulated by OsMADS1 directly. It indicates that OsMADS1-OsMADS17-OsAP2-39 participates in the regulatory network controlling grain yield, and downregulation of OsMADS17 or OsAP2-39 expression can further improve grain yield by simultaneously increasing grain number and grain weight. Our findings provide insights into understanding the molecular basis co-regulating rice yield-related traits, and offer a strategy for breeding higher-yielding rice varieties.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Plant Breeding , Edible Grain/genetics , Transcription Factors/metabolism , Phenotype
2.
Plant Biotechnol J ; 21(5): 931-942, 2023 05.
Article in English | MEDLINE | ID: mdl-36610008

ABSTRACT

African cultivated rice (Oryza glaberrima Steud.) was domesticated from its wild progenitor species (Oryza barthii) about 3000 years ago. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest. By contrast, Asian cultivated rice (Oryza sativa) displays greater resistance to seed shattering, allowing higher grain production. A better understanding in regulation of seed shattering would help to improve harvesting efficiency in African cultivated rice. Here, we report the map-based cloning and characterization of OgSH11, a MYB transcription factor controlling seed shattering in O. glaberrima. OgSH11 represses the expression of lignin biosynthesis genes and lignin deposition by binding to the promoter of GH2. We successfully developed a new O. glaberrima material showing significantly reduced seed shattering by knockout of SH11 in O. glaberrima using CRISPR-Cas9 mediated approach. Identification of SH11 not only supplies a new target for seed shattering improvement in African cultivated rice, but also provides new insights into the molecular mechanism of abscission layer development.


Subject(s)
Oryza , Lignin/genetics , Seeds , Edible Grain/genetics , Transcription Factors/genetics
3.
New Phytol ; 237(5): 1794-1809, 2023 03.
Article in English | MEDLINE | ID: mdl-36352516

ABSTRACT

Isoflavones are a class of secondary metabolites produced by legumes and play important roles in human health and plant stress tolerance. The C2H2 zinc-finger transcription factor (TF) functions in plant stress tolerance, but little is known about its function in isoflavone regulation in soybean (Glycine max). Here, we report a C2H2 zinc-finger TF gene, GmZFP7, which regulates isoflavone accumulation in soybean. Overexpressing GmZFP7 increased the isoflavone concentration in both transgenic hairy roots and plants. By contrast, silencing GmZFP7 expression significantly reduced isoflavone levels. Metabolomic and qRT-PCR analysis revealed that GmZFP7 can increase the flux of the phenylpropanoid pathway. Furthermore, dual-luciferase and electrophoretic mobility shift assays showed that GmZFP7 regulates isoflavone accumulation by influencing the expression of Isoflavone synthase 2 (GmIFS2) and Flavanone 3 ß-hydroxylase 1 (GmF3H1). In this study, we demonstrate that GmZFP7 contributes to isoflavone accumulation by regulating the expression of the gateway enzymes (GmIFS2 and GmF3H1) of competing phenylpropanoid pathway branches to direct the metabolic flux into isoflavone. A haplotype analysis indicated that important natural variations were present in GmZFP7 promoters, with P-Hap1 and P-Hap3 being the elite haplotypes. Our findings provide insight into how GmZFP7 regulates the phenylpropanoid pathway and enhances soybean isoflavone content.


Subject(s)
Glycine max , Isoflavones , Humans , Glycine max/metabolism , Isoflavones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Zinc/metabolism
4.
Cell Res ; 32(10): 878-896, 2022 10.
Article in English | MEDLINE | ID: mdl-35821092

ABSTRACT

Pan-genomes from large natural populations can capture genetic diversity and reveal genomic complexity. Using de novo long-read assembly, we generated a graph-based super pan-genome of rice consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. Our pan-genome reveals extensive structural variations (SVs) and gene presence/absence variations. Additionally, our pan-genome enables the accurate identification of nucleotide-binding leucine-rich repeat genes and characterization of their inter- and intraspecific diversity. Moreover, we uncovered grain weight-associated SVs which specify traits by affecting the expression of their nearby genes. We characterized genetic variants associated with submergence tolerance, seed shattering and plant architecture and found independent selection for a common set of genes that drove adaptation and domestication in Asian and African rice. This super pan-genome facilitates pinpointing of lineage-specific haplotypes for trait-associated genes and provides insights into the evolutionary events that have shaped the genomic architecture of various rice species.


Subject(s)
Oryza , Domestication , Genome, Plant , Genomics , Leucine/genetics , Nucleotides , Oryza/genetics
5.
J Genet Genomics ; 49(5): 427-436, 2022 05.
Article in English | MEDLINE | ID: mdl-35231639

ABSTRACT

African cultivated rice, Oryza glaberrima, is characterized by its glabrous glumes. During domestication, the pubescent glumes of its wild ancestor, Oryza barthii, lost their trichomes, and in this study, we show that glabrous glume 5 (GLAG5), a WUSCHEL-like homeobox transcription factor gene on chromosome 5, is required for trichome development. DNA methylation associated with an hAT transposable element inserted in the promoter region of GLAG5 is found to reduce its expression, leading to the formation of glabrous glumes and leaves in African cultivated rice. Among 82 African cultivated rice varieties investigated in this study, 59 (approximately 71%) lines exhibit glabrous glumes and harbor the hAT transposon; however, the other 23 varieties (approximately 29%), which exhibit pubescent glumes, lack the hAT transposon, indicating that glag5 had undergone strong artificial selection. The πw/πc ratios also show the hAT transposon insertions influence the genetic diversity of an approximately 150-kb interval encompassing the GLAG5 locus. The identification of the GLAG5 gene provides new insights into the domestication of cultivated rice in Africa. We speculate that the selection of varieties with mutations in their promoter regions is an important aspect of crop domestication.


Subject(s)
Domestication , Oryza , Africa , Genetic Variation , Mutation , Oryza/genetics
6.
J Genet Genomics ; 49(5): 458-468, 2022 05.
Article in English | MEDLINE | ID: mdl-35144028

ABSTRACT

Soil salinity inhibits seed germination and reduces seedling survival rate, resulting in significant yield reductions in crops. Here, we report the identification of a polyamine oxidase, OsPAO3, conferring salt tolerance at the germination stage in rice (Oryza sativa L.), through map-based cloning approach. OsPAO3 is up-regulated under salt stress at the germination stage and highly expressed in various organs. Overexpression of OsPAO3 increases activity of polyamine oxidases, enhancing the polyamine content in seed coleoptiles. Increased polyamine may lead to the enhance of the activity of ROS-scavenging enzymes to eliminate over-accumulated H2O2 and to reduce Na+ content in seed coleoptiles to maintain ion homeostasis and weaken Na+ damage. These changes resulted in stronger salt tolerance at the germination stage in rice. Our findings not only provide a unique gene for breeding new salt-tolerant rice cultivars but also help to elucidate the mechanism of salt tolerance in rice.


Subject(s)
Oryza , Salt Tolerance , Germination/genetics , Hydrogen Peroxide , Oryza/genetics , Oxidoreductases Acting on CH-NH Group Donors , Plant Breeding , Polyamines , Salt Tolerance/genetics , Seedlings/genetics , Polyamine Oxidase
7.
J Exp Bot ; 72(4): 1212-1224, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33097962

ABSTRACT

Photosynthesis and plant architecture are important factors influencing grain yield in rice (Oryza sativa L.). Here, we identified a high-tillering and dwarf 12 (htd12) mutant and analyzed the effects of the HTD12 mutation on these important factors. HTD12 encodes a 15-cis-ζ-carotene isomerase (Z-ISO) belonging to the nitrite and nitric oxide reductase U (NnrU) protein family, as revealed by positional mapping and transformation experiments. Sequence analysis showed that a single nucleotide transition from guanine (G) to adenine (A) in the 3' acceptor site between the first intron and second exon of HTD12 alters its mRNA splicing in htd12 plants, resulting in a 49-amino acid deletion that affects carotenoid biosynthesis and photosynthesis. In addition, compared with the wild type, htd12 had significantly lower concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS), a native strigolactone, in both roots and root exudates, resulting in an obvious increase in tiller number and decrease in plant height. These findings indicate that HTD12, the rice homolog of Z-ISO, regulates chloroplast development and photosynthesis by functioning in carotenoid biosynthesis, and modulates plant architecture by affecting strigolactone concentrations.


Subject(s)
Oryza , Photosynthesis , Plant Proteins/physiology , cis-trans-Isomerases/physiology , Amino Acid Sequence , Carotenoids/metabolism , Gene Expression Regulation, Plant , Mutation , Oryza/enzymology , Oryza/genetics , Plant Proteins/genetics , cis-trans-Isomerases/genetics
8.
Nat Commun ; 11(1): 443, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974373

ABSTRACT

Callus browning, a common trait derived from the indica rice cultivar (Oryza sativa L.), is a challenge to transformation regeneration. Here, we report the map-based cloning of BROWNING OF CALLUS1 (BOC1) using a population derived from crossing Teqing, an elite indica subspecies exhibiting callus browning, and Yuanjiang, a common wild rice accession (Oryza rufipogon Griff.) that is less susceptible to callus browning. We show that BOC1 encodes a SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) protein. Callus browning can be reduced by appropriate upregulation of BOC1, which consequently improves the genetic transformation efficiency. The presence of a Tourist-like miniature inverted-repeat transposable element (Tourist MITE) specific to wild rice in the promoter of BOC1 increases the expression of BOC1 in callus. BOC1 may decrease cell senescence and death caused by oxidative stress. Our study provides a gene target for improving tissue culturability and genetic transformation.


Subject(s)
Oryza/cytology , Oryza/genetics , Plant Proteins/genetics , Alleles , Cinnamates/pharmacology , Cloning, Molecular , Gene Expression Regulation, Plant , Hygromycin B/analogs & derivatives , Hygromycin B/pharmacology , Oryza/drug effects , Oryza/physiology , Oxidative Stress , Phenotype , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Sequence Analysis, RNA/methods , Tissue Culture Techniques , Transformation, Genetic
9.
Mol Plant ; 12(8): 1075-1089, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31002981

ABSTRACT

The modification of plant architecture is a crucial target in rice domestication and modern genetic improvement. Although several genes regulating rice plant architecture have been characterized, the molecular mechanisms underlying rice plant architecture domestication remain largely unclear. Here we show that the inclined tiller growth in wild rice is controlled by a single dominant gene, TILLER INCLINED GROWTH 1 (TIG1), which is located on chromosome 8 and encodes a TCP transcriptional activator. TIG1 is primarily expressed in the adaxial side of the tiller base, promotes cell elongation, and enlarges the tiller angle in wild rice. Variations in the TIG1 promoter of indica cultivars (tig1 allele) resulted in decreased expression of TIG1 in the adaxial side of tiller base and reduced cell length and tiller angle, leading to the transition from inclined tiller growth in wild rice to erect tiller growth during rice domestication. TIG1 positively regulates the expression of EXPA3, EXPB5, and SAUR39 to promote cell elongation and increase the tiller angle. Selective sweep analysis revealed that the tig1 allele was selected in indica cultivars by human beings. The cloning and characterization of TIG1 supports a new scenario of plant architecture evolution in rice.


Subject(s)
Crops, Agricultural/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Alleles , Crops, Agricultural/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics
10.
Plant Physiol ; 180(1): 356-366, 2019 05.
Article in English | MEDLINE | ID: mdl-30770460

ABSTRACT

The emergence of sterile individuals in the hybrid backcross progeny of wild and cultivated rice limits the use of wild rice alleles for improving cultivated rice, but the molecular mechanisms underlying this sterility remain unclear. Here, we identified the semisterile introgression line YIL42, derived from a cross between the indica rice variety Teqing (Oryza sativa) and Oryza rufipogon accession YJCWR (Yuanjiang common wild rice), which exhibits semisterility. Using positional cloning, we isolated EMBRYO SAC ABORTION 1 (ESA1), which encodes a nuclear-membrane localized protein containing an armadillo repeat domain. A mutation in ESA1 at position 1819 (T1819C) converts a stop codon into an Arg (R) codon, causing delayed termination of protein translation. Analysis of transgenic lines indicated that the difference in ESA1 protein structure between O. rufipogon-derived ESA1 and Teqing-derived esa1 affects female gamete abortion during early mitosis. Fertility investigation and expression analysis indicated that the interaction between ESA1 T1819 and unknown gene(s) of Teqing affects spikelet fertility of the hybrid backcross progeny. The ESA1 T1819 allele is present in O. rufipogon but absent in O. sativa, suggesting that variation in ESA1 may be associated with interspecific hybrid incompatibility between wild and cultivated rice. Our findings provide insight into the molecular mechanism underlying female sterility, which is useful for improving the panicle seed setting rate of rice and for developing a strategy to overcome interspecific hybrid sterility between cultivated rice and wild rice.


Subject(s)
Oryza/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Seeds/physiology , Chimera , Chromosome Mapping , Gene Expression Regulation, Plant , Mitosis , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Protein Domains , Repetitive Sequences, Amino Acid , Seeds/genetics
11.
Plant Cell ; 31(1): 17-36, 2019 01.
Article in English | MEDLINE | ID: mdl-30626621

ABSTRACT

The elimination of seed shattering was a crucial event during crop domestication. Improving and fine-tuning the regulation of this process will further enhance grain yield by avoiding seed losses during crop production. In this work, we identified the loss-of-shattering mutant suppression of shattering1 (ssh1) through a screen of mutagenized wild rice (Oryza rufipogon) introgression lines with naturally high shattering. Using the MutMap approach and transformation experiments, we isolated a genetic factor for seed shattering, SSH1, which is an allele of SUPERNUMERARY BRACT (SNB), a gene encoding a plant-specific APETALA2-like transcription factor. A C-to-A point mutation in the ninth intron of SNB altered the splicing of its messenger RNA, causing the reduced shattering of the ssh1 mutant by altering the development of the abscission layer and vascular bundle at the junction between the seed and the pedicel. Our data suggest that SNB positively regulates the expression of two rice REPLUMLESS orthologs, qSH1 and SH5 In addition, the ssh1 mutant had larger seeds and a higher grain weight, resulting from its increased elongation of the glume longitudinal cells. The further identification of favorable SNB alleles will be valuable for improving rice seed shattering and grain yield using molecular breeding strategies.


Subject(s)
Oryza/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Transcription Factors/metabolism , Mutation/genetics , Oryza/genetics , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Seeds/genetics , Transcription Factors/genetics
12.
Plant J ; 98(4): 639-653, 2019 05.
Article in English | MEDLINE | ID: mdl-30689248

ABSTRACT

Miniature inverted-repeat transposable elements (MITEs) are structurally homogeneous non-autonomous DNA transposons with high copy numbers that play important roles in genome evolution and diversification. Here, we analyzed the rice high-tillering dwarf (htd) mutant in an advanced backcross population between cultivated and wild rice, and identified an active MITE named miniature Jing (mJing). The mJing element belongs to the PIF/Harbinger superfamily. japonica rice var. Nipponbare and indica var. 93-11 harbor 72 and 79 mJing family members, respectively, have undergone multiple rounds of amplification bursts during the evolution of Asian cultivated rice (Oryza sativa L.). A heterologous transposition experiment in Arabidopsis thaliana indicated that the autonomous element Jing is likely to have provides the transposase needed for mJing mobilization. We identified 297 mJing insertion sites and their presence/absence polymorphism among 71 rice samples through targeted high-throughput sequencing. The results showed that the copy number of mJing varies dramatically among Asian cultivated rice (O. sativa), its wild ancestor (O. rufipogon), and African cultivated rice (O. glaberrima) and that some mJing insertions are subject to directional selection. These findings suggest that the amplification and removal of mJing elements have played an important role in rice genome evolution and species diversification.


Subject(s)
DNA Transposable Elements/genetics , Genome, Plant/genetics , Oryza/genetics , Arabidopsis Proteins , Base Sequence , Genes, Plant/genetics , High-Throughput Nucleotide Sequencing , Mutation , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Transposases
13.
Plant J ; 96(4): 716-733, 2018 11.
Article in English | MEDLINE | ID: mdl-30101570

ABSTRACT

Inflorescence branching is a key agronomic trait determining rice yield. The primary branch of the ancestral wild rice (Oryza rufipogon Griff.) bears few grains, due to minimal secondary branching. By contrast, Oryza sativa cultivars have been selected to produce large panicles with more secondary branches. Here we showed that the CONTROL OF SECONDARY BRANCH 1 (COS1) gene, which is identical to FRIZZY PANICLE (FZP), plays an important role in the key transition from few secondary branches in wild rice to more secondary branches in domesticated rice cultivars. A 4-bp tandem repeat deletion approximately 2.7 kb upstream of FZP may affect the binding activities of auxin response factors to the FZP promoter, decrease the expression level of FZP and significantly enhance the number of secondary branches and grain yield in cultivated rice. Functional analyses showed that NARROW LEAF 1 (NAL1), a trypsin-like serine and cysteine protease, interacted with FZP and promoted its degradation. Consistently, downregulating FZP expression or upregulating NAL1 expression in the commercial cultivar Zhonghua 17 increased the number of secondary branches per panicle, grain number per panicle and grain yield per plant. Our findings not only provide insights into the molecular mechanism of increasing grain number and yield during rice domestication, but also offer favorable genes for improving the grain yield of rice.


Subject(s)
Domestication , Edible Grain/genetics , Gene Expression Regulation, Plant , Inflorescence/genetics , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Cysteine Proteases/metabolism , Edible Grain/metabolism , Genes, Plant/genetics , Inflorescence/metabolism , Phenotype , Plant Proteins/genetics , Plants, Genetically Modified , Proteolysis , Regulatory Sequences, Nucleic Acid/physiology , Sequence Analysis , Serine Endopeptidases/metabolism
14.
Nat Plants ; 4(6): 331-337, 2018 06.
Article in English | MEDLINE | ID: mdl-29872176

ABSTRACT

Domestication represents a unique opportunity to study the evolutionary process. The elimination of seed dispersal traits was a key step in the evolution of cereal crops under domestication. Here, we show that ObSH3, a YABBY transcription factor, is required for the development of the seed abscission layer. Moreover, selecting a genomic segment deletion containing SH3 resulted in the loss of seed dispersal in populations of African cultivated rice (Oryza glaberrima Steud.). Functional characterization of SH3 and SH4 (another gene controlling seed shattering on chromosome 4) revealed that multiple genes can lead to a spectrum of non-shattering phenotypes, affecting other traits such as ease of threshing that may be important to tune across different agroecologies and postharvest practices. The molecular evolution analyses of SH3 and SH4 in a panel of 93 landraces provided unprecedented geographical detail of the domestication history of African rice, tracing multiple dispersals from a core heartland and introgression from local wild rice. The cloning of ObSH3 not only provides new insights into a critical crop domestication process but also adds to the body of knowledge on the molecular mechanism of seed dispersal.


Subject(s)
Domestication , Oryza/genetics , Plant Proteins/physiology , Seed Dispersal/genetics , Transcription Factors/physiology , Africa, Western , Biological Evolution , Cloning, Molecular , Genes, Plant/genetics , Genes, Plant/physiology , Microscopy, Confocal , Oryza/physiology , Plant Proteins/genetics , Seeds/genetics , Seeds/physiology , Seeds/ultrastructure , Transcription Factors/genetics
15.
Plant J ; 94(4): 661-669, 2018 05.
Article in English | MEDLINE | ID: mdl-29537667

ABSTRACT

Plant architecture is a key agronomical factor determining crop yield and has been a major target of cereal crop domestication. The transition of plant architecture from the prostrate tiller of typical African wild rice (Oryza barthii) to the erect tiller of African cultivated rice (Oryza glaberrima) was a key step during domestication of African rice. Here we show that PROG7 (PROSTRATE GROWTH 7), a zinc-finger transcription factor gene on chromosome 7, is required for the prostrate growth of African wild rice. Mutations in the promoter region of prog7 reduced the level of gene expression in the tiller base, leading to erect growth in African cultivated rice. Sequence comparison and haplotype analysis show that 90 varieties of cultivated rice from 11 countries carry the same mutations in the prog7 region. A strong signal in a 60-kb genomic region was detected around the prog7 gene, suggesting that the region was under strong positive selection during the domestication process. Identification of the PROG7 gene provides new insights into the molecular basis of plant architecture in crops and facilitates investigation of the history of domestication of African rice.


Subject(s)
Oryza/genetics , Plant Proteins/metabolism , Biological Evolution , Cloning, Molecular , Crops, Agricultural , Domestication , Edible Grain , Genes, Reporter , Mutation , Oryza/anatomy & histology , Phenotype , Plant Proteins/genetics , Recombinant Fusion Proteins
16.
Nat Commun ; 8(1): 1497, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29133783

ABSTRACT

During rice domestication and improvement, increasing grain yield to meet human needs was the primary objective. Rice grain yield is a quantitative trait determined by multiple genes, but the molecular basis for increased grain yield is still unclear. Here, we show that NUMBER OF GRAINS 1 (NOG1), which encodes an enoyl-CoA hydratase/isomerase, increases the grain yield of rice by enhancing grain number per panicle without a negative effect on the number of panicles per plant or grain weight. NOG1 can significantly increase the grain yield of commercial high-yield varieties: introduction of NOG1 increases the grain yield by 25.8% in the NOG1-deficient rice cultivar Zhonghua 17, and overexpression of NOG1 can further increase the grain yield by 19.5% in the NOG1-containing variety Teqing. Interestingly, NOG1 plays a prominent role in increasing grain number, but does not change heading date or seed-setting rate. Our findings suggest that NOG1 could be used to increase rice production.


Subject(s)
Crops, Agricultural/growth & development , Enoyl-CoA Hydratase/genetics , Genes, Plant , Oryza/growth & development , Cloning, Molecular , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Mutagenesis, Insertional , Oryza/genetics , Oryza/metabolism , Oxidation-Reduction , Quantitative Trait Loci , Transcription, Genetic
17.
Nat Plants ; 3: 17064, 2017 May 08.
Article in English | MEDLINE | ID: mdl-28481332

ABSTRACT

Grain size is one of the most important components of grain yield and selecting large seeds has been a main target during plant domestication. Surprisingly, the grain of African cultivated rice (Oryza glaberrima Steud.) typically is smaller than that of its progenitor, Oryza barthii. Here we report the cloning and characterization of a quantitative trait locus, GL4, controlling the grain length on chromosome 4 in African rice, which regulates longitudinal cell elongation of the outer and inner glumes. Interestingly, GL4 also controls the seed shattering phenotype like its orthologue SH4 gene in Asian rice. Our data show that a single-nucleotide polymorphism (SNP) mutation in the GL4 gene resulted in a premature stop codon and led to small seeds and loss of seed shattering during African rice domestication. These results provide new insights into diverse domestication practices in African rice, and also pave the way for enhancing crop yield to meeting the challenge of cereal demand in West Africa.


Subject(s)
Genes, Plant , Oryza/genetics , Polymorphism, Single Nucleotide , Seeds/anatomy & histology , Africa , Codon, Terminator/genetics , Domestication , Edible Grain/anatomy & histology , Edible Grain/genetics , Genetic Pleiotropy , Oryza/anatomy & histology , Oryza/physiology , Quantitative Trait Loci
18.
Genetics ; 205(2): 993-1002, 2017 02.
Article in English | MEDLINE | ID: mdl-27986805

ABSTRACT

Grain number is an important factor in determining grain production of rice (Oryza sativa L.). The molecular genetic basis for grain number is complex. Discovering new genes involved in regulating rice grain number increases our knowledge regarding its molecular mechanisms and aids breeding programs. Here, we identified GRAINS NUMBER 2 (GN2), a novel gene that is responsible for rice grain number, from "Yuanjiang" common wild rice (O. rufipogon Griff.). Transgenic plants overexpressing GN2 showed less grain number, reduced plant height, and later heading date than control plants. Interestingly, GN2 arose through the insertion of a 1094-bp sequence from LOC_Os02g45150 into the third exon of LOC_Os02g56630, and the inserted sequence recruited its nearby sequence to generate the chimeric GN2 The gene structure and expression pattern of GN2 were distinct from those of LOC_Os02g45150 and LOC_Os02g56630 Sequence analysis showed that GN2 may be generated in the natural population of Yuanjiang common wild rice. In this study, we identified a novel functional chimeric gene and also provided information regarding the molecular mechanisms regulating rice grain number.


Subject(s)
Genes, Plant , Oryza/genetics , Plants, Genetically Modified , Seeds/genetics , Mutagenesis, Insertional , Oryza/growth & development , Seeds/growth & development
19.
J Integr Plant Biol ; 58(12): 983-996, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27762074

ABSTRACT

Grain yield in rice (Oryza sativa L.) is closely related to leaf and flower development. Coordinative regulation of leaf, pollen, and seed development in rice as a critical biological and agricultural question should be addressed. Here we identified two allelic rice mutants with narrow and semi-rolled leaves, named narrow and rolled leaf 2-1 (nrl2-1) and nrl2-2. Map-based molecular cloning revealed that NRL2 encodes a novel protein with unknown biochemical function. The mutation of NRL2 caused pleiotropic effects, including a reduction in the number of longitudinal veins, defective abaxial sclerenchymatous cell differentiation, abnormal tapetum degeneration and microspore development, and the formation of more slender seeds compared with the wild type (WT). The NRL2 protein interacted with Rolling-leaf (RL14), causing the leaves of the nrl2 mutants to have a higher cellulose content and lower lignin content than the WT, which may have been related to sclerenchymatous cell differentiation and tapetum degeneration. Thus, this gene is an essential developmental regulator controlling fundamental cellular and developmental processes, serving as a potential breeding target for high-yielding rice cultivars.


Subject(s)
Genes, Plant , Oryza/anatomy & histology , Oryza/genetics , Plant Leaves/anatomy & histology , Seeds/anatomy & histology , Cell Wall/metabolism , Conserved Sequence , Fertility , Gene Expression Regulation, Plant , Mutation/genetics , Organ Size , Oryza/ultrastructure , Phenotype , Phenylalanine/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/cytology , Pollen/metabolism , Pollen/ultrastructure
20.
Plant Cell ; 28(10): 2453-2463, 2016 10.
Article in English | MEDLINE | ID: mdl-27634315

ABSTRACT

Cultivated rice (Oryza sativa) was domesticated from wild rice (Oryza rufipogon), which typically displays fewer grains per panicle and longer grains than cultivated rice. In addition, wild rice has long awns, whereas cultivated rice has short awns or lacks them altogether. These changes represent critical events in rice domestication. Here, we identified a major gene, GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT1 (GAD1), that regulates those critical changes during rice domestication. GAD1 is located on chromosome 8 and is predicted to encode a small secretary signal peptide belonging to the EPIDERMAL PATTERNING FACTOR-LIKE family. A frame-shift insertion in gad1 destroyed the conserved cysteine residues of the peptide, resulting in a loss of function, and causing the increased number of grains per panicle, shorter grains, and awnless phenotype characteristic of cultivated rice. Our findings provide a useful paradigm for revealing functions of peptide signal molecules in plant development and helps elucidate the molecular basis of rice domestication.


Subject(s)
Edible Grain/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Chromosomes, Plant/genetics , Edible Grain/genetics , Frameshift Mutation/genetics , Oryza/genetics , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...