Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Physiol Rep ; 11(23): e15869, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38054572

ABSTRACT

Long ncRNAs (lncRNAs) have been shown to play a biological and physiological role in various tissues including the heart. We and others have previously established that the lncRNA Oip5os1 (1700020I14Rik, OIP5-AS1, Cyrano) is enriched in striated muscles, and its deletion in mice leads to defects in both skeletal and cardiac muscle function. In the present study, we investigated the impact of global Oip5os1 deletion on cardiac function in the setting of streptozotocin (STZ)-induced diabetes. Specifically, we studied male WT and KO mice with or without diabetes for 24 weeks, and phenotyped animals for metabolic and cardiac endpoints. Independent of genotype, diabetes was associated with left ventricular diastolic dysfunction based on a fall in E'/A' ratio. Deletion of Oip5os1 in a setting of diabetes had no significant impact on ventricular function or ventricular weight, but was associated with left atrial dysfunction (reduced fractional shortening) and myopathy which was associated with anesthesia intolerance and premature death in the majority of KO mice tested during cardiac functional assessment. This atrial phenotype was not observed in WT diabetic mice. The most striking molecular difference was a reduction in the metabolic regulator ERRalpha in the atria of KO mice compared with WT mice. There was also a trend for a reduction in Serca2a. These findings highlight Oip5os1 as a gene of interest in aspects of atrial function in the setting of diabetes, highlighting an additional functional role for this lncRNA in cardiac pathological settings.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Experimental , RNA, Long Noncoding , Animals , Male , Mice , Atrial Fibrillation/complications , Atrial Fibrillation/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Heart Atria/metabolism , Heart Atria/pathology , Myocardium/pathology , RNA, Long Noncoding/genetics
2.
Diabetes ; 71(9): 1994-2008, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35713929

ABSTRACT

Type 1 diabetes is an autoimmune disease with no cure, where clinical translation of promising therapeutics has been hampered by the reproducibility crisis. Here, short-term administration of an antagonist to the receptor for advanced glycation end products (sRAGE) protected against murine diabetes at two independent research centers. Treatment with sRAGE increased regulatory T cells (Tregs) within the islets, pancreatic lymph nodes, and spleen, increasing islet insulin expression and function. Diabetes protection was abrogated by Treg depletion and shown to be dependent on antagonizing RAGE with use of knockout mice. Human Tregs treated with a RAGE ligand downregulated genes for suppression, migration, and Treg homeostasis (FOXP3, IL7R, TIGIT, JAK1, STAT3, STAT5b, CCR4). Loss of suppressive function was reversed by sRAGE, where Tregs increased proliferation and suppressed conventional T-cell division, confirming that sRAGE expands functional human Tregs. These results highlight sRAGE as an attractive treatment to prevent diabetes, showing efficacy and reproducibility at multiple research centers and in human T cells.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Animals , Humans , Insulin/therapeutic use , Mice , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Reproducibility of Results , T-Lymphocytes, Regulatory
3.
Redox Biol ; 47: 102135, 2021 11.
Article in English | MEDLINE | ID: mdl-34598016

ABSTRACT

Metabolic conditions such as obesity, insulin resistance and glucose intolerance are frequently associated with impairments in skeletal muscle function and metabolism. This is often linked to dysregulation of homeostatic pathways including an increase in reactive oxygen species (ROS) and oxidative stress. One of the main sites of ROS production is the mitochondria, where the flux of substrates through the electron transport chain (ETC) can result in the generation of oxygen free radicals. Fortunately, several mechanisms exist to buffer bursts of intracellular ROS and peroxide production, including the enzymes Catalase, Glutathione Peroxidase and Superoxide Dismutase (SOD). Of the latter, there are two intracellular isoforms; SOD1 which is mostly cytoplasmic, and SOD2 which is found exclusively in the mitochondria. Developmental and chronic loss of these enzymes has been linked to disease in several studies, however the temporal effects of these disturbances remain largely unexplored. Here, we induced a post-developmental (8-week old mice) deletion of SOD2 in skeletal muscle (SOD2-iMKO) and demonstrate that 16 weeks of SOD2 deletion leads to no major impairment in whole body metabolism, despite these mice displaying alterations in aspects of mitochondrial abundance and voluntary ambulatory movement. This is likely partly explained by the suggestive data that a compensatory response may exist from other redox enzymes, including catalase and glutathione peroxidases. Nevertheless, we demonstrated that inducible SOD2 deletion impacts on specific aspects of muscle lipid metabolism, including the abundance of phospholipids and phosphatidic acid (PA), the latter being a key intermediate in several cellular signaling pathways. Thus, our findings suggest that post-developmental deletion of SOD2 induces a more subtle phenotype than previous embryonic models have shown, allowing us to highlight a previously unrecognized link between SOD2, mitochondrial function and bioactive lipid species including PA.


Subject(s)
Muscle, Skeletal , Superoxide Dismutase , Animals , Mice , Mitochondria/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
4.
Endocrinol Diabetes Metab ; 4(3): e00278, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34277994

ABSTRACT

AIMS: The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS: To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS: Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS: These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.


Subject(s)
Diabetic Nephropathies , Podocytes , Animals , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Glomerular Basement Membrane/metabolism , Glycation End Products, Advanced/metabolism , Mice , Podocytes/metabolism , Receptor for Advanced Glycation End Products/metabolism
5.
Mol Metab ; 53: 101292, 2021 11.
Article in English | MEDLINE | ID: mdl-34246805

ABSTRACT

OBJECTIVE: CRISPR/Cas9 technology has revolutionized gene editing and fast tracked our capacity to manipulate genes of interest for the benefit of both research and therapeutic applications. Whilst many advances have, and continue to be made in this area, perhaps the most utilized technology to date has been the generation of knockout cells, tissues and animals. The advantages of this technology are many fold, however some questions still remain regarding the effects that long term expression of foreign proteins such as Cas9, have on mammalian cell function. Several studies have proposed that chronic overexpression of Cas9, with or without its accompanying guide RNAs, may have deleterious effects on cell function and health. This is of particular concern when applying this technology in vivo, where chronic expression of Cas9 in tissues of interest may promote disease-like phenotypes and thus confound the investigation of the effects of the gene of interest. Although these concerns remain valid, no study to our knowledge has yet to demonstrate this directly. METHODS: In this study we used the lox-stop-lox (LSL) spCas9 ROSA26 transgenic (Tg) mouse line to generate four tissue-specific Cas9-Tg models that express Cas9 in the heart, liver, skeletal muscle or adipose tissue. We performed comprehensive phenotyping of these mice up to 20-weeks of age and subsequently performed molecular analysis of their organs. RESULTS: We demonstrate that Cas9 expression in these tissues had no detrimental effect on whole body health of the animals, nor did it induce any tissue-specific effects on whole body energy metabolism, liver health, inflammation, fibrosis, heart function or muscle mass. CONCLUSIONS: Our data suggests that these models are suitable for studying the tissue specific effects of gene deletion using the LSL-Cas9-Tg model, and that phenotypes observed utilizing these models can be confidently interpreted as being gene specific, and not confounded by the chronic overexpression of Cas9.


Subject(s)
CRISPR-Associated Protein 9/genetics , Animals , CRISPR-Cas Systems/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
6.
iScience ; 24(6): 102537, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142046

ABSTRACT

Long non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (1700020I14Rik/Cyrano) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of in vitro and ex vivo methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice. Using CRISPR, we engineered a global OIP5-AS1 knockout (KO) mouse and demonstrated that female KO mice develop exacerbated heart failure following cardiac pressure overload (transverse aortic constriction [TAC]) but male mice do not. RNA-sequencing of wild-type and KO hearts suggest that OIP5-AS1 regulates pathways that impact mitochondrial function. Thus, these findings highlight OIP5-AS1 as a gene of interest in sex-specific differences in mitochondrial function and development of heart failure.

7.
Sci Rep ; 9(1): 13664, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541173

ABSTRACT

The accumulation of advanced glycation end products (AGEs) have been implicated in the development and progression of diabetic kidney disease (DKD). There has been interest in investigating the potential of AGE clearance receptors, such as oligosaccharyltransferase-48 kDa subunit (OST48) to prevent the detrimental effects of excess AGE accumulation seen in the diabetic kidney. Here the objective of the study was to increase the expression of OST48 to examine if this slowed the development of DKD by facilitating the clearance of AGEs. Groups of 8-week-old heterozygous knock-in male mice (n = 9-12/group) over-expressing the gene encoding for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-) and litter mate controls were randomised to either (i) no diabetes or (ii) diabetes induced via multiple low-dose streptozotocin and followed for 24 weeks. By the study end, global over expression of OST48 increased glomerular OST48. This facilitated greater renal excretion of AGEs but did not affect circulating or renal AGE concentrations. Diabetes resulted in kidney damage including lower glomerular filtration rate, albuminuria, glomerulosclerosis and tubulointerstitial fibrosis. In diabetic mice, tubulointerstitial fibrosis was further exacerbated by global increases in OST48. There was significantly insulin effectiveness, increased acute insulin secretion, fasting insulin concentrations and AUCinsulin observed during glucose tolerance testing in diabetic mice with global elevations in OST48 when compared to diabetic wild-type littermates. Overall, this study suggested that despite facilitating urinary-renal AGE clearance, there were no benefits observed on kidney functional and structural parameters in diabetes afforded by globally increasing OST48 expression. However, the improvements in insulin secretion seen in diabetic mice with global over-expression of OST48 and their dissociation from effects on kidney function warrant future investigation.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/genetics , Glycation End Products, Advanced/blood , Hexosyltransferases/genetics , Insulin/metabolism , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Disease Models, Animal , Gene Knock-In Techniques , Hexosyltransferases/metabolism , Liver Function Tests , Male , Mice , Streptozocin
8.
Islets ; 10(1): 10-24, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29157116

ABSTRACT

The contribution of environmental factors to pancreatic islet damage in type 1 diabetes remains poorly understood. In this study, we crossed mice susceptible to type 1 diabetes, where parental male (CD8+ T cells specific for IGRP206-214; NOD8.3) and female (NOD/ShiLt) mice were randomized to a diet either low or high in AGE content and maintained on this diet throughout pregnancy and lactation. After weaning, NOD8.3+ female offspring were identified and maintained on the same parental feeding regimen for until day 28 of life. A low AGE diet, from conception to early postnatal life, decreased circulating AGE concentrations in the female offspring when compared to a high AGE diet. Insulin, proinsulin and glucagon secretion were greater in islets isolated from offspring in the low AGE diet group, which was akin to age matched non-diabetic C57BL/6 mice. Pancreatic islet expression of Ins2 gene was also higher in offspring from the low AGE diet group. Islet expression of glucagon, AGEs and the AGE receptor RAGE, were each reduced in low AGE fed offspring. Islet immune cell infiltration was also decreased in offspring exposed to a low AGE diet. Within pancreatic lymph nodes and spleen, the proportions of CD4+ and CD8+ T cells did not differ between groups. There were no significant changes in body weight, fasting glucose or glycemic hormones. This study demonstrates that reducing exposure to dietary AGEs throughout gestation, lactation and early postnatal life may benefit pancreatic islet secretion and immune infiltration in the type 1 diabetic susceptible mouse strain, NOD8.3.


Subject(s)
Diet , Glycation End Products, Advanced/adverse effects , Islets of Langerhans/drug effects , Lactation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Animals , Animals, Newborn , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/physiopathology , Female , Glycation End Products, Advanced/administration & dosage , Islets of Langerhans/physiopathology , Lactation/drug effects , Lactation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/physiopathology
9.
Sci Rep ; 7(1): 15190, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123192

ABSTRACT

Mitochondrial dysfunction is a pathological mediator of diabetic kidney disease (DKD). Our objective was to test the mitochondrially targeted agent, MitoQ, alone and in combination with first line therapy for DKD. Intervention therapies (i) vehicle (D); (ii) MitoQ (DMitoQ;0.6 mg/kg/day); (iii) Ramipril (DRam;3 mg/kg/day) or (iv) combination (DCoAd) were administered to male diabetic db/db mice for 12 weeks (n = 11-13/group). Non-diabetic (C) db/m mice were followed concurrently. No therapy altered glycaemic control or body weight. By the study end, both monotherapies improved renal function, decreasing glomerular hyperfiltration and albuminuria. All therapies prevented tubulointerstitial collagen deposition, but glomerular mesangial expansion was unaffected. Renal cortical concentrations of ATP, ADP, AMP, cAMP, creatinine phosphate and ATP:AMP ratio were increased by diabetes and mostly decreased with therapy. A higher creatine phosphate:ATP ratio in diabetic kidney cortices, suggested a decrease in ATP consumption. Diabetes elevated glucose 6-phosphate, fructose 6-phosphate and oxidised (NAD+ and NADP+) and reduced (NADH) nicotinamide dinucleotides, which therapy decreased generally. Diabetes increased mitochondrial oxygen consumption (OCR) at complex II-IV. MitoQ further increased OCR but decreased ATP, suggesting mitochondrial uncoupling as its mechanism of action. MitoQ showed renoprotection equivalent to ramipril but no synergistic benefits of combining these agents were shown.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Diabetic Nephropathies/drug therapy , Molecular Targeted Therapy/methods , Organophosphorus Compounds/administration & dosage , Ramipril/administration & dosage , Ubiquinone/analogs & derivatives , Animals , Diabetic Nephropathies/pathology , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Mice , Treatment Outcome , Ubiquinone/administration & dosage
10.
Sci Rep ; 7(1): 12292, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947796

ABSTRACT

The protein oligosaccharyltransferase-48 (OST48) is integral to protein N-glycosylation in the endoplasmic reticulum (ER) but is also postulated to act as a membrane localised clearance receptor for advanced glycation end-products (AGE). Hepatic ER stress and AGE accumulation are each implicated in liver injury. Hence the objective of this study was to increase the expression of OST48 and examine the effects on hepatic function and structure. Groups of 8 week old male mice (n = 10-12/group) over-expressing the gene for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-), were followed for 24 weeks, while randomised to diets either low or high in AGE content. By week 24 of the study, either increasing OST48 expression or consumption of high AGE diet impaired liver function and modestly increased hepatic fibrosis, but their combination significantly exacerbated liver injury in the absence of steatosis. DDOST+/- mice had increased both portal delivery and accumulation of hepatic AGEs leading to central adiposity, insulin secretory defects, shifted fuel usage to fatty and ketoacids, as well as hepatic glycogen accumulation causing hepatomegaly along with hepatic ER and oxidative stress. This study revealed a novel role of the OST48 and AGE axis in hepatic injury through ER stress, changes in fuel utilisation and glucose intolerance.


Subject(s)
Glycation End Products, Advanced/adverse effects , Hexosyltransferases/metabolism , Liver Cirrhosis/pathology , Membrane Proteins/metabolism , Animals , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Feeding Behavior , Glycation End Products, Advanced/blood , Glycation End Products, Advanced/metabolism , Hexosyltransferases/genetics , Humans , Liver/drug effects , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/etiology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Stress/drug effects , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
12.
Glycoconj J ; 33(4): 645-52, 2016 08.
Article in English | MEDLINE | ID: mdl-27270766

ABSTRACT

Diabetic patients are postulated to be in a perpetual state of oxidative stress and inflammation at sites where chronic complications occur. The accumulation of AGEs derived from both endogenous and exogenous sources (such as the diet) have been implicated in the development and progression of diabetic complications, particularly nephropathy. There has been some interest in investigating the potential for reducing the AGE burden in chronic disease, through the action of AGE "clearance" receptors, such as the advanced glycation end-product receptor 1 (AGE-R1). Reducing the burden of AGEs has been linked to attenuation of inflammation, slower progression of diabetic complications (in particular vascular and renal complications) and has been shown to extend lifespan. To date, however, there have been no direct investigations into whether AGE-R1 has any role in modulating normal kidney function, or specifically during the development and progression of diabetes. This mini-review will focus on the recent advances in knowledge around the mechanistic function of AGE-R1 and the implications of this for the pathogenesis of diabetic kidney disease.


Subject(s)
Diabetic Nephropathies/metabolism , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Diabetic Nephropathies/pathology , Humans
13.
Sci Rep ; 6: 26428, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27226136

ABSTRACT

Blood glucose control is the primary strategy to prevent complications in diabetes. At the onset of kidney disease, therapies that inhibit components of the renin angiotensin system (RAS) are also indicated, but these approaches are not wholly effective. Here, we show that once daily administration of the novel glucose lowering agent, empagliflozin, an SGLT2 inhibitor which targets the kidney to block glucose reabsorption, has the potential to improve kidney disease in type 2 diabetes. In male db/db mice, a 10-week treatment with empagliflozin attenuated the diabetes-induced upregulation of profibrotic gene markers, fibronectin and transforming-growth-factor-beta. Other molecular (collagen IV and connective tissue growth factor) and histological (tubulointerstitial total collagen and glomerular collagen IV accumulation) benefits were seen upon dual therapy with metformin. Albuminuria, urinary markers of tubule damage (kidney injury molecule-1, KIM-1 and neutrophil gelatinase-associated lipocalin, NGAL), kidney growth, and glomerulosclerosis, however, were not improved with empagliflozin or metformin, and plasma and intra-renal renin activity was enhanced with empagliflozin. In this model, blood glucose lowering with empagliflozin attenuated some molecular and histological markers of fibrosis but, as per treatment with metformin, did not provide complete renoprotection. Further research to refine the treatment regimen in type 2 diabetes and nephropathy is warranted.


Subject(s)
Albuminuria/metabolism , Benzhydryl Compounds/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Glucosides/administration & dosage , Hypoglycemic Agents/administration & dosage , Albuminuria/urine , Animals , Benzhydryl Compounds/pharmacology , Biomarkers/metabolism , Biomarkers/urine , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/metabolism , Disease Models, Animal , Drug Administration Schedule , Glucosides/pharmacology , Hepatitis A Virus Cellular Receptor 1/metabolism , Hypoglycemic Agents/pharmacology , Lipocalin-2/urine , Male , Mice , Treatment Outcome
14.
J Immunol ; 194(9): 4567-76, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25810394

ABSTRACT

Inducible BALT (iBALT) can amplify pulmonary or systemic inflammatory responses to the benefit or detriment of the host. We took advantage of the age-dependent formation of iBALT to interrogate the underlying mechanisms that give rise to this ectopic, tertiary lymphoid organ. In this study, we show that the reduced propensity for weanling as compared with neonatal mice to form iBALT in response to acute LPS exposure is associated with greater regulatory T cell expansion in the mediastinal lymph nodes. Ab- or transgene-mediated depletion of regulatory T cells in weanling mice upregulated the expression of IL-17A and CXCL9 in the lungs, induced a tissue neutrophilia, and increased the frequency of iBALT to that observed in neonatal mice. Remarkably, neutrophil depletion in neonatal mice decreased the expression of the B cell active cytokines, a proliferation-inducing ligand and IL-21, and attenuated LPS-induced iBALT formation. Taken together, our data implicate a role for neutrophils in lymphoid neogenesis. Neutrophilic inflammation is a common feature of many autoimmune diseases in which iBALT are present and pathogenic, and hence the targeting of neutrophils or their byproducts may serve to ameliorate detrimental lymphoid neogenesis in a variety of disease contexts.


Subject(s)
Inflammation/immunology , Lymphoid Tissue/immunology , Neutrophils/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Animals, Newborn , Cellular Microenvironment/immunology , Cytokines/biosynthesis , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Lymphocyte Depletion , Lymphoid Tissue/metabolism , Male , Mice , Neutrophils/metabolism , T-Lymphocytes, Regulatory/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
15.
J Endocrinol ; 222(3): R97-111, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24982467

ABSTRACT

The endoplasmic reticulum (ER) is an organelle that primarily functions to synthesise new proteins and degrade old proteins. Owing to the continual and variable nature of protein turnover, protein synthesis is inherently an error-prone process and is therefore tightly regulated. Fortunately, if this balance between synthesis and degradation is perturbed, an intrinsic response, the unfolded protein response (UPR) is activated to restore ER homoeostasis through the action of inositol-requiring protein 1, activating transcription factor 6 and PKR-like ER kinase transmembrane sensors. However, if the UPR is oversaturated and misfolded proteins accumulate, the ER can shift into a cytotoxic response, a physiological phenomenon known as ER stress. The mechanistic pathways of the UPR have been extensively explored; however, the role of this process in such a synthetic organ as the kidney requires further clarification. This review will focus on these aspects and will discuss the role of ER stress in specific resident kidney cells and how this may be integral in the pathogenesis and progression of diabetic nephropathy (DN). Given that diabetes is a perturbed state of protein turnover in most tissues, it is important to understand if ER stress is a secondary or tertiary response to other changes within the diabetic milieu or if it is an independent accelerator of kidney disease. Modulators of ER stress could provide a valuable tool for the treatment of DN and are under active investigation in other contexts.


Subject(s)
Diabetic Nephropathies/etiology , Endoplasmic Reticulum Stress , Kidney/metabolism , Animals , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Endoplasmic Reticulum Stress/drug effects , Humans , Mice , Models, Biological , Podocytes/metabolism , Podocytes/pathology , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL
...