Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Aging (Albany NY) ; 16(5): 4378-4395, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38407971

ABSTRACT

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Small Ubiquitin-like Modifier (SUMO)-ylation plays a crucial role in tumorigenesis. However, the SUMOylation pathway landscape and its clinical implications in LUAD remain unclear. Here, we analyzed genes involved in the SUMOylation pathway in LUAD and constructed a SUMOylation pathway signature (SUMOPS) using the LASSO-Cox regression model, validated in independent cohorts. Our analysis revealed significant dysregulation of SUMOylation-related genes in LUAD, comprising of favorable or unfavorable prognostic factors. The SUMOPS model was associated with established molecular and histological subtypes of LUAD, highlighting its clinical relevance. The SUMOPS stratified LUAD patients into SUMOPS-high and SUMOPS-low subtypes with distinct survival outcomes and adjuvant chemotherapy responses. The SUMOPS-low subtype showed favorable responses to adjuvant chemotherapy. The correlations between SUMOPS scores and immune cell infiltration suggested that patients with the SUMOPS-high subtype exhibited favorable immune profiles for immune checkpoint inhibitor (ICI) treatment. Additionally, we identified UBA2 as a key SUMOylation-related gene with an increased expression and a poor prognosis in LUAD. Cell function experiment confirmed the role of UBA2 in promoting LUAD cell proliferation, invasion, and migration. These findings provide valuable insights into the SUMOylation pathway and its prognostic implications in LUAD, paving the way for personalized treatment strategies and the development of novel therapeutic targets.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Sumoylation , Prognosis , Immunotherapy , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Ubiquitin-Activating Enzymes/genetics
2.
Parasit Vectors ; 13(1): 490, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32988387

ABSTRACT

BACKGROUND: Toxoplasma gondii is an obligate parasite of all warm-blooded animals around the globe. Once infecting a cell, it manipulates the host's DNA damage response that is yet to be elucidated. The objectives of the present study were three-fold: (i) to assess DNA damages in T. gondii-infected cells in vitro; (ii) to ascertain causes of DNA damage in T. gondii-infected cells; and (iii) to investigate activation of DNA damage responses during T. gondii infection. METHODS: HeLa, Vero and HEK293 cells were infected with T. gondii at a multiplicity of infection (MOI) of 10:1. Infected cells were analyzed for a biomarker of DNA double-strand breaks (DSBs) γH2AX at 10 h, 20 h or 30 h post-infection using both western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were measured using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), and ROS-induced DNA damage was inhibited by a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage responses were evaluated by detecting the active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) by western blot. RESULTS: γH2AX levels in the infected HeLa cells were significantly increased over time during T. gondii infection compared to uninfected cells. NAC treatment greatly reduced ROS and concomitantly diminished γH2AX in host cells. The phosphorylated ATM/CHK2 were elevated in T. gondii-infected cells. CONCLUSIONS: Toxoplasma gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also activated DNA damage response pathway ATM/CHK2. Toxoplasma gondii manages to keep a balance between survival and apoptosis of its host cells for the benefit of its own survival.


Subject(s)
DNA Breaks, Double-Stranded , Reactive Oxygen Species/metabolism , Toxoplasma/physiology , Toxoplasmosis/genetics , Apoptosis , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , HEK293 Cells , HeLa Cells , Humans , Phosphorylation , Toxoplasma/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Toxoplasmosis/physiopathology
3.
Vet Parasitol ; 243: 248-255, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28807302

ABSTRACT

Toxoplasma gondii (T. gondii) is one of the most common parasite that can infect almost any warm-blooded animals including humans. The cyclic nucleotide-dependent protein kinase (PKA) regulates a spectrum of intracellular signal pathways in many organisms. Protein kinase catalytic subunit (PKAC) is the core of the whole protein, and plays an important role in the life cycle of T.gondii. Here, T.gondii PKAC (TgPKAC) overexpression strain (TgPKAC-OE) was constructed. The growth of the TgPKAC-OE, RH△Ku80, and TgPKAC inhibition strains (TgPKAC-H89) were analysed by SYBR-green real-time PCR, and the ultrastructure was observed by transmission electron microscopy. The survival rate in mice was also recorded to analyse the virulence of the parasites. We also investigated the subcellular localization of TgPKAC in Vero cells by laser scanning microscope. We found that TgPKAC-OE strain exhibited obviously increased growth rate in Vero cells in vitro, and infected mice survived for a shorter time compared to wild type strain. Ultrastructural analysis found more autophagosomes-like structures in TgPKAC-H89 parasite compared to RH△Ku80 strain, and the relative expression level of Toxoplasma gondii autophagy-related protein (ATG8) in TgPKAC-H89 parasite was higher than wild type parasite. Laser confocal results showed that TgPKAC was mainly expressed in the cytoplasm of Vero cells. In conclusion, we hypothesized that inhibition of TgPKAC could cause autophagy of Toxoplasma gondii and then influence the replication of the parasite. TgPKAC plays an important role in parasite virulence in vivo, and the subcellular localization was successfully detected in Vero cells. Our data will provide a basis for further study of TgPKAC function and help screen drug targets of T. gondii.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Toxoplasma/enzymology , Animals , Antibodies, Protozoan , Blotting, Western , Chlorocebus aethiops , Mice , Protein Subunits/metabolism , Toxoplasma/metabolism , Vero Cells
4.
Sci Rep ; 6: 20106, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26830331

ABSTRACT

Bacillus thuringiensis (Bt) Cry toxins have been used widely in pest managements. However, Cry toxins are not effective against sap-sucking insects (Hemiptera), which limits the application of Bt for pest management. In order to extend the insecticidal spectrum of Bt toxins to the rice brown planthopper (BPH), Nilaparvata lugens, we modified Cry1Ab putative receptor binding domains with selected BPH gut-binding peptides (GBPs). Three surface exposed loops in the domain II of Cry1Ab were replaced with two GBPs (P2S and P1Z) respectively. Bioassay results showed that toxicity of modified toxin L2-P2S increased significantly (~9 folds) against BPH nymphs. In addition, damage of midgut cells was observed from the nymphs fed with L2-P2S. Our results indicate that modifying Cry toxins based on the toxin-gut interactions can broaden the insecticidal spectrum of Bt toxin. This method provides another approach for the development of transgenic crops with novel insecticidal activity against hemipteran insects and insect populations resistant to current Bt transgenic crops.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Endotoxins , Hemiptera/metabolism , Hemolysin Proteins , Pest Control, Biological , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Endotoxins/chemistry , Endotoxins/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Protein Domains , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL