Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 851390, 2022.
Article in English | MEDLINE | ID: mdl-35464847

ABSTRACT

Background: Chromobox family proteins (CBXs) are vital components of epigenetic regulation complexes and transcriptionally inhibit target genes by modifying the chromatin. Accumulating evidence indicates that CBXs are involved in the initiation and progression of multiple malignancies. However, the expression, function, and clinical relevance such as the prognostic and diagnostic values of different CBXs in esophageal carcinoma (ESCA) are still unclear. Methods: We applied Oncomine, TCGA, GEO, GEPIA, UALCAN, Kaplan-Meier plotter, cBioPortal, Metascape, and TIMER to investigate the roles of CBX family members in ESCA. Additionally, quantitative real-time PCR (RT-PCR), western blot, and immunofluorescence were used to verify the expression of CBX family members in ESCA clinical samples. Results: Compared with normal tissues, the mRNA expression levels of CBX1/3/8 were significantly increased in ESCA, whereas CBX7 mRNA expression was reduced in both the TCGA cohort and GEO cohort. In the TCGA cohort, ROC curves suggested that CBX1/2/3/4/8 had great diagnostic value in ESCA, and the AUCs were above 0.9. Furthermore, upregulation of CBX1/3/8 and downregulation of CBX7 were closely related to the clinicopathological parameters in ESCA patients, such as tumor grades, tumor nodal metastasis status, and TP53 mutation status. The survival analysis indicated that higher CBX1/3/8 mRNA expressions and lower CBX7 expression suggested an unfavorable prognosis in ESCA. High genetic change rate (52%) of CBXs was found in ESCA patients. Functions and pathways of mutations in CBXs and their 50 frequently altered neighbor genes in ESCA patients were investigated; the results showed that DNA repair and DNA replication were correlated to CBX alterations. Moreover, we found a significant correlation between the expression level of CBX family members and the infiltration of immune cells in ESCA. Finally, we verified the expression of CBX family members in clinical samples and found the results were consistent with the databases. Conclusion: Our study implied that CBX1/3/7/8 are potential targets of precision therapy for ESCA patients and new biomarkers for the prognosis.

2.
Front Oncol ; 11: 681425, 2021.
Article in English | MEDLINE | ID: mdl-34367967

ABSTRACT

NUFIP1 is an RNA-binding protein that interacts with fragile X mental retardation protein (FMRP) in the messenger ribonucleoprotein particle (mRNP). We previously showed that NUFIP1 was upregulated in colorectal cancer (CRC), but how the protein may contribute to the disease and patient prognosis is unknown. Here we combine database analysis, microarray, quantitative PCR, and immunohistochemistry of patients' samples to confirm our previous findings on NUFIP1 overexpression in CRC, and to reveal that increased expression of NUFIP1 in CRC tissues correlated with worse overall, recurrence-free, event-free and disease-free survival in patients, as well as with more advanced CRC clinicopathological stage. Loss of function analysis demonstrated that NUFIP1 knockdown suppressed cell growth in vitro and in vivo, inhibited cell viability and survival, and induced cell cycle arrest and apoptosis in vitro, as well as up-regulated Bax and down-regulated Bcl-2 protein expression. In addition, as a natural anticancer triterpene from various fruits and vegetables, ursolic acid (UA) treatment suppressed cell proliferation, down-regulated NUFIP1 protein expression, and further enhanced the effects of NUFIP1 knockdown in CRC cells in vitro. NUFIP1 knockdown up-regulated the expression of 136 proteins, down-regulated the expression of 41 proteins, and enriched multiple signaling pathways including the senescence-associated heterochromatin foci (SAHF) pathway. Furthermore, NUFIP1 knockdown enhanced the expression of senescence-associated-ß-galactosidase (SA-ß-gal), the SAHF markers HP1γ and trimethylation (H3k9me3), and the senescence-related protein HMGA2, as well as both p53 and its downstream p21 protein expression. Our findings suggest that NUFIP1 is overexpressed in CRC and correlates with disease progression and poor patient survival. NUFIP1 may exert oncogenic effects partly by altering senescence. UA may show potential to treat CRC by down-regulating NUFIP1.

3.
Chin Med J (Engl) ; 134(9): 1052-1054, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33942799

Subject(s)
Cell Line, Tumor
4.
J Gastroenterol Hepatol ; 36(2): 455-466, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32667711

ABSTRACT

BACKGROUND AND AIM: 5-Lipoxygenase has been reported to enhance cell proliferation, migration, and invasion. Epithelial-mesenchymal transition is considered an important process for tumor metastasis and invasion. METHODS: The 5-lipoxygenase expression levels and the prognoses in patients with gastric cancer were evaluated by immunohistochemistry and by the log-rank test on Kaplan-Meier curves. We established 5-lipoxygenase-overexpressed and 5-lipoxygenase-silenced gastric cancer cells and measured migration, invasion, and epithelial-mesenchymal transition makers to examine the role of 5-lipoxygenase in gastric cancer in vitro. In vivo, 5-lipoxygenase-overexpressed gastric cancer cells were administered into mice by subcutaneous injection, intraperitoneal injection or splenic intravenous injection to study the proliferation or metastasis of 5-lipoxygenase in mice. Using the extracellular signal-regulated kinase pathway inhibitor U0126 and activator tumor growth factor-ß, we investigated the mechanism of epithelial-mesenchymal transition induced by 5-lipoxygenase in gastric cancer cells. RESULTS: 5-Lipoxygenase was upregulated in gastric cancer tissues and was related to poor overall survival in gastric cancer patients. 5-Lipoxygenase promoted gastric cancer cell proliferation, migration, and invasion and induced the process of epithelial-mesenchymal transition in gastric cancer cells. In the nude mouse model, mice with gastric cancer tumors overexpressing 5-LOX had a faster tumor growth rate and more severe abdominal and liver metastases than the control group. Inhibition of extracellular signal-regulated kinase signaling by U0126 or activation by tumor growth factor-ß neutralized the effect of 5-LOX overexpression or silencing on epithelial-mesenchymal transition. CONCLUSION: 5-Lipoxygenase promotes epithelial-mesenchymal transition in gastric cancer by activating the extracellular signal-regulated kinase signaling pathway.


Subject(s)
Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/physiology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Animals , Arachidonate 5-Lipoxygenase/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression , Humans , Mice , Neoplasm Invasiveness/genetics , Stomach Neoplasms/metabolism
5.
Onco Targets Ther ; 12: 5551-5561, 2019.
Article in English | MEDLINE | ID: mdl-31371993

ABSTRACT

BACKGROUND: 12-Lipoxygenase (12-LOX) plays a major role in the progression and metastasis of various types of cancer. In gastric cancer (GC), the expression level of 12-LOX is significantly up-regulated; however, its function, and underlying mechanism of action remain unclear. METHODS: The mRNA and protein expression levels of 12-LOX were assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses, respectively, in GC cell lines. 12-LOX expression was stably up-regulated using lentiviral vector in BGC823 and MGC803 cells, and cell-counting kit-8 (CCK8), colony formation, and invasion assays were performed to verify the function of 12-LOX in proliferation and metastasis. In addition, the expression levels of epithelial-mesenchymal transition (EMT) differentiation markers and downstream targets of the Wnt/ß-catenin signaling pathway were examined by Western blotting. A nude mouse model of tumor growth and metastasis was established to investigate the role of 12-LOX in vivo. RESULTS: Our findings demonstrate that 12-LOX mRNA and protein were highly expressed in GC cell lines. 12-LOX overexpression promoted GC cell proliferation, migration, and invasion both in vitro and in vivo. In addition, up-regulation of 12-LOX promoted the EMT in GC cells, as reflected by a decrease in E-cadherin expression and an increase in N-cadherin and Snail expression. 12-LOX overexpression in GC cells also increased the expression of multiple downstream targets of the Wnt/ß-catenin signaling pathway. CONCLUSION: These findings revealed that 12-LOX functions as an oncogene in promoting GC cell proliferation and metastasis in vitro and in vivo. In addition, 12-LOX might regulate the EMT via the Wnt/ß-catenin signaling pathway, indicating a potential role for 12-LOX as a target in GC treatment.

6.
Oncol Lett ; 16(2): 1455-1462, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30008824

ABSTRACT

The role of 12-lipoxygenase (12-LOX) in tumorigenesis has been well established in several types of human cancer, including gastric cancer. It was reported that epithelial-mesenchymal transition (EMT) contributes to tumor invasion and metastasis. However, whether 12-LOX promotes the invasion and metastasis of human gastric cancer cells via EMT remains to be elucidated. In the present study, the expression of 12-LOX and EMT markers, N-cadherin and E-cadherin, was evaluated in gastric cancer and adjacent normal mucosa samples by immunohistochemical analysis. 12-LOX-overexpressing gastric cancer cells were established via lentiviral transfection of SCG-7901 cells. Wound-healing and Transwell assays were performed to examine the regulation of cell metastasis and invasion by 12-LOX. Furthermore, the regulation of N-cadherin expression by 12-LOX was evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that the expression of 12-LOX and N-cadherin was significantly higher in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). By contrast, the expression of E-cadherin was significantly decreased in gastric cancer compared with that in adjacent normal mucosa tissues (P<0.05). Furthermore, the expression of 12-LOX was positively associated with N-cadherin expression in gastric cancer tissues. 12-LOX-overexpressing gastric cancer cells exhibited significantly increased invasion and migration abilities compared with the empty vector and control groups. The expression of N-cadherin in 12-LOX-overexpressing gastric cancer cells was increased compared with that in the empty vector and control groups. The present study suggests that EMT may be involved in the promotion of the invasion and metastasis of human gastric cancer cells by 12-LOX.

7.
Oncol Rep ; 33(1): 457-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25333894

ABSTRACT

Cancer cells can survive under hypoxia by metabolic reprogramming to achieve a high level of glycolysis, which contributes to the development of chemoresistance. Therefore, inhibition of glycolysis would be a novel strategy for overcoming hypoxia­induced drug resistance. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to exert strong antitumor activity toward various types of cancer. In the present study, we evaluated the effect of baicalein on hypoxia-induced 5-fluorouracil (5-FU) resistance in gastric cancer AGS cells and investigated the possible molecular mechanisms. We found that baicalein increased the sensitivity of AGS cells to 5-FU treatment under hypoxia. In addition, the hypoxia-enhanced glycolytic flux and expression of several critical glycolysis-associated enzymes (HK2, LDH-A and PDK1) in the AGS cells were suppressed by baicalein. Furthermore, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-1α (HIF-1α) expression in AGS cells. These results together suggest that inhibition of glycolysis via regulation of the PTEN/Akt/HIF-1α signaling pathway may be one of the mechanisms whereby baicalein reverses 5-FU resistance in cancer cells under hypoxia.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Flavanones/pharmacology , Fluorouracil/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cell Line, Tumor/drug effects , Glycolysis/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction/drug effects , Stomach Neoplasms/pathology
8.
Mol Med Rep ; 10(4): 1999-2003, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25109410

ABSTRACT

The transforming growth factor-ß (TGF-ß) signaling pathway exhibits an important role in cancer invasion and metastasis. Excessive expression of TGF-ß activates Smad4, leading to the upregulation of downstream metastasis-associated genes. Thus, the inhibition of the TGF-ß/Smad4 signaling pathway may be a novel strategy for treatment of cancer metastasis. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to exert strong anti-tumor activity towards various types of cancer. In the present study the effect of baicalein on migration and invasion of cancer cells was evaluated using wound-healing and Transwell assays. In order to investigate the possible molecular mechanisms of the anti-metastatic effects of baicalein, quantitative polymerase chain reaction (qPCR) and western blot analyses were performed to examine the effect on the expression of TGF­ß, Smad4, N-cadherin, vimentin, ZEB1 and ZEB2. It was determined that baicalein inhibited the migration and invasion of AGS cells by suppressing the TGF-ß/Smad4 signaling pathway. In addition, baicalein treatment reduced the expression of the metastasis-associated N-cadherin, vimentin, ZEB1 and ZEB2, downstream target genes of the TGF­ß/Smad4 signaling pathway. Collectively, these results suggest that inhibition of the metastasis of cancer cells via inactivation of TGF-ß/Smad4 signaling is one of the mechanisms by which baicalein may treat cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Flavanones/toxicity , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Plant Roots/chemistry , Plant Roots/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Scutellaria baicalensis/chemistry , Scutellaria baicalensis/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Stomach Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/genetics , Vimentin/genetics , Vimentin/metabolism , Zinc Finger E-box Binding Homeobox 2 , Zinc Finger E-box-Binding Homeobox 1
SELECTION OF CITATIONS
SEARCH DETAIL
...