Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 13(6): e2302690, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37885334

ABSTRACT

Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Proanthocyanidins , Zinc Oxide , Zinc/pharmacology , Zinc Oxide/pharmacology , Hydrogels/pharmacology , Antioxidants , Proanthocyanidins/pharmacology , Reactive Oxygen Species , Silver/pharmacology
2.
Adv Mater ; 34(19): e2110094, 2022 May.
Article in English | MEDLINE | ID: mdl-35202501

ABSTRACT

Tumor blockade therapy is a promising penetration-independent antitumor modality, which effectively inhibits the exchange of nutrients, oxygen, and information between the tumor and surrounding microenvironments. However, the current blockade therapy strategies have limited antitumor efficacy due to defects of inadequate tumor obstruction, possible side effects, and short duration. For these reasons, a facilely synthesized versatile polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-alendronate (DSPE-PEG-ALN, DPA) is developed to initiate the formation of biomineral shell around osteosarcoma as a potent physical barrier. The DSPE moiety shares a similar chemical structure with the cytomembrane, allowing the membrane insertion of DPA. The bisphosphonic acid groups in ALN attract ions to realize biomineralization around cells. After injection in the invasive osteosarcoma tissue, DPA inserts into the cytomembrane, induces continuous mineral deposition, and ultimately builds a physical barrier around the tumor. Meanwhile, ALN in DPA alleviates bone destruction by suppressing the activity of osteoclasts. Through hindering the exchange of necessary substances, the biomineralization coating inhibits the growth of primary osteosarcoma and pulmonary metastasis simultaneously. Therefore, the multifunctional polymer-initiating blockade therapy provides a promising modality for tumor inhibition in clinics with high efficacy and negligible side effects.


Subject(s)
Bone Neoplasms , Osteosarcoma , Biomineralization , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Polyethylene Glycols/chemistry , Polymers/chemistry , Tumor Microenvironment
3.
J Nanobiotechnology ; 19(1): 263, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34481503

ABSTRACT

Melatonin has been proposed as a potent anticarcinogen presents a short half-life for osteosarcoma (OS). Cell-in-cell (CIC) structures play a role in the development of malignant tumors by changing the tumor cell energy metabolism. This study developed a melatonin-loaded 3D printed magnesium-polycaprolactone (Mg-PCL) scaffold and investigated its effect and molecular mechanism on CIC in OS. Mg-PCL scaffold was prepared by 3D-printing and its characteristic was determined. The effect and molecular mechanism of Mg-PCL scaffold as well as melatonin-loaded Mg-PCL on OS growth and progression were investigated in vivo and in vitro. We found that melatonin receptor 1 (MT1) and CIC expressions were increased in OS tissues and cells. Melatonin treatment inhibit the key CIC pathway, Rho/ROCK, through the cAMP/PKA signaling pathway, interfering with the mitochondrial physiology of OS cells, and thus playing an anti-invasion and anti-metastasis role in OS. The Mg-PCL-MT could significantly inhibit distant organ metastasis of OS in the in vivo model. Our results showed that melatonin-loaded Mg-PCL scaffolds inhibited the proliferation, invasion and metastasis of OS cells through the CIC pathway. The Mg-PCL-MT could be a potential therapeutics for OS.


Subject(s)
Magnesium/pharmacology , Melatonin/pharmacology , Osteosarcoma/drug therapy , Polyesters/pharmacology , Printing, Three-Dimensional , Adult , Animals , Female , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Rabbits
4.
Bioact Mater ; 6(9): 2688-2697, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33665501

ABSTRACT

PEGylation has been widely applied to prolong the circulation times of nanomedicines via the steric shielding effect, which consequently improves the intratumoral accumulation. However, cell uptake of PEGylated nanoformulations is always blocked by the steric repulsion of PEG, which limits their therapeutic effect. To this end, we designed and prepared two kinds of poly(l-glutamic acid)-cisplatin (PLG-CDDP) nanoformulations with detachable PEG, which is responsive to specific tumor tissue microenvironments for prolonged circulation time and enhanced cell internalization. The extracellular pH (pHe)-responsive cleavage 2-propionic-3-methylmaleic anhydride (CDM)-derived amide bond and matrix metalloproteinases-2/9 (MMP-2/9)-sensitive degradable peptide PLGLAG were utilized to link PLG and PEG, yielding pHe-responsive PEG-pH e-PLG and MMP-sensitive PEG-MMP-PLG. The corresponding smart nanoformulations PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were then prepared by the complexation of polypeptides and cisplatin (CDDP). The circulation half-lives of PEG-pH e-PLG-Pt and PEG-MMP-PLG-Pt were about 4.6 and 4.2 times higher than that of the control PLG-Pt, respectively. Upon reaching tumor tissue, PEG on the surface of nanomedicines was detached as triggered by pHe or MMP, which increased intratumoral CDDP retention, enhanced cell uptake, and improved antitumor efficacy toward a fatal high-grade serous ovarian cancer (HGSOC) mouse model, indicating the promising prospects for clinical application of detachable PEGylated nanoformulations.

5.
Bioact Mater ; 6(2): 346-360, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32954053

ABSTRACT

Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics. Recently, poly(lactic-co-glycolic acid) (PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility, degradability, mechanical properties, and capabilities to promote bone regeneration. In this article, we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances, elaborate on their applications for bone regeneration with or without bioactive factors, and prospect the challenges and opportunities in clinical bone regeneration.

6.
J Tissue Eng ; 11: 2041731420943839, 2020.
Article in English | MEDLINE | ID: mdl-32922718

ABSTRACT

Cartilage injuries are typically caused by trauma, chronic overload, and autoimmune diseases. Owing to the avascular structure and low metabolic activities of chondrocytes, cartilage generally does not self-repair following an injury. Currently, clinical interventions for cartilage injuries include chondrocyte implantation, microfracture, and osteochondral transplantation. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Stem cell therapies, especially mesenchymal stem cell (MSCs) therapies, were found to be a feasible strategy in the treatment of cartilage injuries. MSCs can easily be isolated from mesenchymal tissue and be differentiated into chondrocytes with the support of chondrogenic factors or scaffolds to repair damaged cartilage tissue. In this review, we highlighted the full success of cartilage repair using MSCs, or MSCs in combination with chondrogenic factors and scaffolds, and predicted their pros and cons for prospective translation to clinical practice.

7.
Nano Lett ; 20(8): 6191-6198, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32697585

ABSTRACT

Vascular disrupting agents (VDAs) are emerging anticancer agents, which show rising demand for combination with cytostatic drugs (CSDs), owing to inadequate tumor inhibition when applied singly. Nevertheless, the combination remains a challenge due to the different working sites of VDAs and CSDs and hypoxia-induced drug resistance after disrupting neovasculature by VDAs. Herein, we developed a shell-stacked nanoparticle (SNP) for coencapsulation of a VDA combretastatin A-4 phosphate (CA4P) and a proteasome inhibitor bortezomib (BTZ). The SNP could spatiotemporally deliver CA4P to tumor neovasculature and BTZ to tumor cells mediated by the site-specific stimuli-activated drug release. Moreover, the SNP also reversed the drug resistance caused by the overexpressed ABCG2 under CA4P-induced hypoxic conditions. The spatiotemporally targeted combination therapy significantly inhibited the growth of both the human A549 pulmonary adenocarcinoma xenograft model and patient-derived xenograft (PDX) model of colon cancer in mice, providing a promising strategy for treating advanced cancers.


Subject(s)
Antineoplastic Agents , Stilbenes , Animals , Antineoplastic Agents/pharmacology , Drug Resistance , Hypoxia , Mice , Nanomedicine
8.
Biomaterials ; 230: 119617, 2020 02.
Article in English | MEDLINE | ID: mdl-31771859

ABSTRACT

Tissue engineering is a promising strategy for the repair of large-scale bone defects, in which scaffolds and growth factors are two critical issues influencing the efficacy of bone regeneration. Unfortunately, the broad application of growth factors is limited by their poor stability in the scaffolds. In the present study, the strictly controlled expression of human bone morphogenetic protein-4 (hBMP-4) in the presence of doxycycline is achieved by adding an hBMP-4 gene fragment into a non-viral artificial restructuring plasmid vector (pSTAR) to form the pSTAR-hBMP-4 plasmid (phBMP-4). Furthermore, the controlled release of phBMP-4 is obtained with an electroactive tissue engineering scaffold, generated by combining a triblock copolymer of poly(l-lactic acid)-block-aniline pentamer-block-poly(l-lactic acid) (PLA-AP) with poly(lactic-co-glycolic acid)/hydroxyapatite (PLGA/HA). This PLGA/HA/PLA-AP/phBMP-4 composite scaffold, with controlled gene release and Dox-regulated gene expression upon electrical stimulation, operating synergistically, exhibits an improved cell proliferation ability, enhanced osteogenesis differentiation in vitro, and effective bone healing in vivo in a rabbit radial defect model. Taking these results together, the proposed smart PLGA/HA/PLA-AP/phBMP-4 scaffold lays a solid theoretical and experimental basis for future applications of such multi-functional materials in bone tissue engineering to help patients in need.


Subject(s)
Bone Regeneration , Electric Stimulation , Osteogenesis , Tissue Scaffolds , Animals , Durapatite , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Rabbits , Tissue Engineering
9.
Biomacromolecules ; 20(12): 4258-4271, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31668061

ABSTRACT

The development of polymer-based drug delivery systems provides efficient modalities for cancer therapy. Most of the polymer pharmaceuticals target cancer cells directly, but the insufficient penetration always results in unsatisfactory anticancer efficacy. To break the above bottleneck, strategies of penetration-independent cancer therapy have been developed as advanced treatments for various cancers in the past decade. In this Perspective, we discussed the pros and cons of polymer-mediated biological and physical penetration-independent approaches for cancer therapy and highlighted their further prospects from bench to bedsides.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Neoplasms/drug therapy , Polymers , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Humans , Neoplasms/metabolism , Neoplasms/pathology , Polymers/chemistry , Polymers/therapeutic use
10.
ACS Appl Mater Interfaces ; 11(9): 8725-8730, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30785721

ABSTRACT

The in vivo implanted biomaterials are known to induce inflammatory response and recruit immune cells, which could be used as robust adjuvants for immunotherapy. However, the degree of inflammatory response induced by the implanted biomaterials is hard to control. In this work, we reported the application of three kinds of thermogels from the polypeptide methoxy poly(ethylene glycol)-polyalanine (mPEG-PAla) with various chiralities to regulate the levels of inflammatory responses in vivo. The mPEG-PLAla (EG45LA28) and mPEG-PDAal (EG45DA27) thermogels exhibited comparable storage modulus ( G') and loss modulus ( G″), both of which were about two times higher than the values of the racemic mPEG-PAla (EG45RA) thermogel. The component d-alanine in the polypeptide thermogels led to controlled tissue inflammation after subcutaneous injection, and the content of d-alanine could adjust the level of inflammation. The expression of tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in subcutaneous tissue around the injected thermogel EG45DA27 were 3.62, 1.52, and 4.55 times the levels of those after EG45RA thermogel injection and 4.52, 7.38, and 7.96 times the levels of those after EG45LA28 injection, respectively. The results indicated that the chiral polypeptide thermogels could induce a controllable inflammatory response in vivo and exhibit great potential as an efficient adjuvant for immunotherapy.


Subject(s)
Adjuvants, Immunologic/pharmacology , Gels/chemistry , Peptides/pharmacology , Skin/drug effects , Animals , Biocompatible Materials/chemistry , Injections, Subcutaneous , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Mice , Peptides/chemistry , Polyethylene Glycols/chemistry , Skin/metabolism , Stereoisomerism , Tumor Necrosis Factor-alpha/metabolism
11.
Biomater Sci ; 7(3): 963-974, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30569055

ABSTRACT

Kidney-sparing surgery is the preferred treatment strategy for low-risk upper tract urothelial carcinoma (UTUC). However, after this procedure, prevention of the carcinoma recurrence in the ureter and supporting the ureter with a ureteral stent are necessary. Biodegradable drug-loaded ureteral scaffolds are able to maintain their long-term effective drug concentrations in the lesion sites without the defects of traditional ureteral stents, which may address both issues simultaneously. The purpose of this study was to reveal the possibility of the controlled delivery of epirubicin (EPI) via gradiently degraded electrospun poly(ε-caprolactone) (PCL)/poly(lactide-co-glycolide) (PLGA) scaffolds to evaluate their antitumor activity against UTUC. The degradable PCL/PLGA scaffolds containing 15.0 and 25.0 wt% PCL and loading of 0, 5.0, and 10.0 wt% EPI were successfully fabricated via electrospinning. In addition, the PCL/PLGA scaffolds showed sustained and controlled degradation and drug release kinetics, that is, their degradation and drug release rates slowed with an increase in the ratio of PCL. The EPI-loaded PCL/PLGA scaffolds showed excellent antitumor activities both in vitro and in vivo without apparent systemic toxicity. Overall, the gradiently-degraded EPI-loaded electrospun polyester scaffolds are potential ureteral stent tubes for the local inhibition of the recurrence of UTUC, where the continued release of EPI can prevent the subsequent proliferation of residual tumor cells, and the gradient degradation is consistent with the repair of the ureter.


Subject(s)
Polyesters/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Liberation , Epirubicin/chemistry , Epirubicin/metabolism , Epirubicin/pharmacology , Epirubicin/therapeutic use , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Transplantation, Heterologous , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
12.
Macromol Rapid Commun ; 39(18): e1800272, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29999555

ABSTRACT

An advanced hydrogel that features facile formation and injectability as well as light-controlled degradation profile is reported here. By modifying 4-arm poly(ethylene glycol) (4-arm PEG) with 2-nitrobenzyl (NB) and phenol, the 4-arm PEG precursor solutions could form enzymatically cross-linked hydrogels in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2 O2 ). The gelation time, mechanical strength, and porous structure could be simply tuned by the concentration of HRP and H2 O2 . Moreover, the hydrogels underwent controlled degradation under UV light irradiation via photo-cleavage reaction of the NB ester bond. The hydrogels exhibited negligible cytotoxicity toward mouse fibroblast L929 cells in vitro and can be manipulated through injection in vivo.


Subject(s)
Cross-Linking Reagents/metabolism , Horseradish Peroxidase/metabolism , Hydrogels/metabolism , Light , Animals , Cell Line , Cell Proliferation , Cross-Linking Reagents/chemistry , Fibroblasts , Horseradish Peroxidase/chemistry , Hydrogels/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Mice , Molecular Structure , Particle Size
15.
Adv Mater ; 29(32)2017 Aug.
Article in English | MEDLINE | ID: mdl-28632302

ABSTRACT

Nanomedicine to overcome both systemic and tumor tissue barriers ideally should have a transformable size and surface, maintaining a certain size and negative surface charge for prolonged circulation, while reducing to a smaller size and switching to a positive surface charge for efficient penetration to and retention in the interstitial space throughout the tumor tissue. However, the design of such size and charge dual-transformable nanomedicine is rarely reported. Here, the design of a shell-stacked nanoparticle (SNP) is reported, which can undergo remarkable size reduction from about 145 to 40 nm, and surface charge reversal from -7.4 to 8.2 mV at acidic tumor tissue, for enhanced tumor penetration and uptake by cells in deep tumor tissue. The disulfide-cross-linked core maintains the stability of the particle and prevents undesired premature drug release until the shedding of the shell, which accelerates the cleavage of more exposed disulfide bond sand intracellular drug release. SNP penetrates about 1 mm into xenografted A549 lung carcinoma, which is about four times penetration depth of the nontransformable one. The doxorubicin (DOX)-loaded SNP (SNP/DOX) shows significant antitumor efficacy and nearly eradicates the tumor, substantiating the importance of the design of size and charge dual-transformable nanomedicine.


Subject(s)
Nanoparticles , Cell Line, Tumor , Doxorubicin , Drug Carriers , Drug Liberation , Humans , Nanomedicine , Neoplasms
16.
Nano Lett ; 17(7): 4526-4533, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28644032

ABSTRACT

Targeted delivery of chemotherapeutic drugs to the desired lesion sites is the main objective in malignancy treatment, especially in highly metastatic malignancies. However, extensive studies around the world on traditional targeting strategies of recognizing either overexpressed receptors or microenvironments in tumors show great limitations, owing to the off-target effect and tumor homogeneity. Integration of both receptor-mediated targeting (RMT) and environment-mediated targeting (EMT) enhances the tumor accumulation and subsequent cell uptake at the same time, which may avoid these limitations. Herein, a dual targeting nanogel of PMNG engineered with both phenylboronic acid (PBA) and morpholine (MP) was reported for not only RMT via specific recognition of sialyl (SA) epitopes but also EMT toward extracellular acidity. Further engineering the nanoparticles via loading doxorubicin (DOX) brought a novel dual targeting system, that is, PMNG/DOX. PMNG/DOX demonstrated a greater targeting effect to both primary and metastatic B16F10 melanoma than the single PBA-modified nanogel (PNG) with only RMT in vitro and in vivo. Moreover, PMNG/DOX was also proved to be highly potent on inhibiting primary tumor growth as well as tumor metastasis on B16F10 melanoma-grafted mouse model. The results demonstrated the dual targeting design as a translational approach for drug delivery to highly metastatic tumor.


Subject(s)
Antineoplastic Agents/administration & dosage , Nanoparticles/chemistry , Tumor Microenvironment/physiology , Animals , Antineoplastic Agents/chemistry , Boronic Acids/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Liberation , Gels , Humans , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Mice , Morpholines/chemistry , Neoplasm Metastasis , Particle Size , Peptides/chemistry , Surface Properties , Tissue Distribution
17.
Mater Sci Eng C Mater Biol Appl ; 76: 1121-1128, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482476

ABSTRACT

The pH-responsive polymer prodrugs were designed to maintain sufficient stability in the bloodstream and promptly release the active drugs when entering the acidic microenvironments, such as tumor tissue and cells. This kind of polymer-drug conjugates has become increasingly intriguing given the specific advantages over traditional drug delivery system. In our work, dextran (Dex) was oxidized into aldehyde-functionalized Dex-CHO before conjugating with doxorubicin (DOX) via efficient Schiff base reaction. The amphiphilic product Dex-DOX aggregated into uniform spherical nanoparticle in aqueous condition. The imine bond in Dex-DOX stayed tough in neutral solution yet quickly fractured when pH was lowered, in which way DOX was locally released and functioned in tumor cells. Our findings proved that the newly-constructed Dex-DOX could obviously promote the pH-dependent drug release, highlight the cell uptake efficiency, and strengthen the antitumor ability toward mouse B16F10 melanoma. In addition, it also largely averted the adverse effects to vital organs, which guaranteed higher level of security. Therefore, Dex-DOX held great potential of becoming a qualified chemotherapeutic drug delivery system.


Subject(s)
Neoplasms , Animals , Doxorubicin , Drug Delivery Systems , Hydrogen-Ion Concentration , Polysaccharides , Schiff Bases
18.
J Colloid Interface Sci ; 496: 201-210, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28232293

ABSTRACT

A kind of core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles (CPD NPs) was prepared by a simple chemical cross-linking method for reduction and pH dual response drug delivery. The resultant CPD NPs are of homogeneous spherical structure with sizes from 69±11 to 107±18nm. Doxorubicin (DOX) was then loaded into the CPD NPs in high efficiency, and showing typical reduction and pH dual responsive release profiles. The flow cytometric analysis and confocal laser scanning microscopy (CLSM) confirmed that the DOX-loaded CPD NPs could be internalized into cancer cell efficiently and release DOX in intracellular environment. Furthermore, cell cytotoxicity assays indicated that the CPD NPs had good biocompatibility toward both cancerous and normal cells, while the Dox-loaded CPD NPs exhibited significant inhibition of cell proliferation in various cancer cells. Therefore, this biocompatible CPD NP may have great potential for intracellular drug delivery in clinical cancer therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Cross-Linking Reagents/chemistry , Dextrans/chemistry , Doxorubicin/administration & dosage , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers , Drug Screening Assays, Antitumor/methods , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Surface Properties
19.
Theranostics ; 7(1): 97-105, 2017.
Article in English | MEDLINE | ID: mdl-28042319

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disorder implicated in multiple joint affection and even disability. The activated macrophages perform a predominant role in onset and persistence of RA. Scavenger receptor (SR), one of several receptors overexpressed on the activated macrophages, is a specific biomarker for targeted therapy of numerous chronic inflammation diseases like RA. In this work, dextran sulfate-graft-methotrexate conjugate (DS-g-MTX) is synthesized and characterized, which exhibits excellent targetability to SR on the activated RAW 264.7 cells. Additionally, the enhanced accumulation and potent inflammatory inhibition are observed in the affected joint after intravenous injection of DS-g-MTX, compared to the treatment with dextran-graft-methotrexate (Dex-g-MTX), as is confirmed by the detection of histopathology and pro-inflammatory cytokines. Our work highlights DS-g-MTX as a potential therapeutic option for RA aiming the SR-expressed activated macrophages.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Arthritis, Experimental/therapy , Dextran Sulfate/administration & dosage , Methotrexate/administration & dosage , Prodrugs/administration & dosage , Receptors, Scavenger/agonists , Animals , Arthritis, Experimental/pathology , Disease Models, Animal , Histocytochemistry , Knee Joint/pathology , Macrophages/metabolism , Mice , Mice, Inbred DBA , RAW 264.7 Cells , Treatment Outcome
20.
Acta Biomater ; 40: 243-253, 2016 08.
Article in English | MEDLINE | ID: mdl-27063495

ABSTRACT

UNLABELLED: The linear, Y-shaped, and linear-dendritic block copolymers of methoxy poly(ethylene glycol)-block-polyamidoamine-block-poly(l-glutamic acid) (MPEG-b-PAMAM-b-PGA) with one, two, four, and eight PGA arms but similar MPEG/PGA weight ratios (W/W) (named as P1PA, P2PA, P4PA and P8PA, respectively) were synthesized and comparatively investigated for doxorubicin hydrochloride (DOX) delivery. All the obtained block copolymers were highly biocompatible and could efficiently load DOX into nanoparticles (NPs) through electrostatic interaction. The NPs formed by linear (P1PA) or Y-shaped (P2PA) block copolymers and DOX were spherically shaped with smaller sizes, while the NPs formed from linear-dendritic block copolymers (P4PA and P8PA) were irregular in shape and larger in size. The P1PA/DOX and P2PA/DOX NPs exhibited better DOX protection and slower DOX release profile. However, cell cytotoxicity assays indicated that all the DOX-loaded NPs exhibited similar cytotoxicities with free DOX, indicating effective DOX release after cellular uptake. The NPs from linear and Y-shaped block copolymers greatly extended the blood circulation time, and displayed more accumulation in tumor site and less accumulation in the liver and kidney compared with the linear-dendritic counterparts. In addition, the P1PA/DOX and P2PA/DOX NPs also exhibited higher anti-tumor efficacy and less toxicity than the other DOX formulations. All these results indicated that the linear and Y-shaped MPEG-b-PAMAM-b-PGA block copolymers displayed better DOX delivery ability in anti-tumor treatment than the linear-dendritic copolymers. STATEMENT OF SIGNIFICANCE: Polymeric NPs derived from block copolymers have emerged as effective vehicles for drug delivery. However, the majority of the researches in this field have involved simple linear block copolymers and there are very few comparative studies on the self-assembly, in vitro, and in vivo drug delivery by the block copolymers with similar composition but different architectures. In this study, a series of linear, Y-shaped, and linear-dendritic polypeptide-based block copolymers were prepared and thoroughly investigated for DOX delivery. These block polymers loaded DOX into NPs with different sizes and morphologies, and exhibited different anti-tumor capabilities both in vitro and in vivo. The results indicated that the architecture of the block copolymers played an important role in their drug delivery behaviors.


Subject(s)
Doxorubicin , Drug Delivery Systems/methods , Polyethylene Glycols , Polyglutamic Acid , Animals , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor/methods , HeLa Cells , Humans , MCF-7 Cells , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Polyglutamic Acid/chemistry , Polyglutamic Acid/pharmacokinetics , Polyglutamic Acid/pharmacology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...