Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892338

ABSTRACT

The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA-6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.


Subject(s)
Benzyl Compounds , Gene Expression Regulation, Plant , Plant Growth Regulators , Purines , Salicylic Acid , Zea mays , Zea mays/growth & development , Zea mays/drug effects , Zea mays/genetics , Zea mays/metabolism , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Purines/pharmacology , Benzyl Compounds/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Oxylipins/pharmacology , Cytokinins/metabolism , Cytokinins/pharmacology , Seeds/drug effects , Seeds/growth & development , Seeds/genetics , Gene Expression Profiling , Signal Transduction/drug effects , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Cyclopentanes/pharmacology
2.
Sci Rep ; 14(1): 5238, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38433245

ABSTRACT

Leaf angle, as one of the important agronomic traits of maize, can directly affect the planting density of maize, thereby affecting its yield. Here we used the ZmLPA1 gene mutant lpa1 to study maize leaf angle and found that the lpa1 leaf angle changed significantly under exogenous brassinosteroid (BR) treatment compared with WT (inbred line B73). Transcriptome sequencing of WT and lpa1 treated with different concentrations of exogenous BR showed that the differentially expressed genes were upregulated with auxin, cytokinin and brassinosteroid; Genes associated with abscisic acid are down-regulated. The differentially expressed genes in WT and lpa1 by weighted gene co-expression network analysis (WGCNA) yielded two gene modules associated with maize leaf angle change under exogenous BR treatment. The results provide a new theory for the regulation of maize leaf angle by lpa1 and exogenous BR.


Subject(s)
Brassinosteroids , Zea mays , Zea mays/genetics , Gene Expression Profiling , Gene Expression , Plant Leaves/genetics
3.
Int J Mol Sci ; 25(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38542154

ABSTRACT

Leaf angle (LA) is one of the core agronomic traits of maize, which controls maize yield by affecting planting density. Previous studies have shown that the KN1 gene is closely related to the formation of maize LA, but its specific mechanism has not been fully studied. In this study, phenotype investigation and transcriptomic sequencing were combined to explore the mechanism of LA changes in wild type maize B73 and mutant kn1 under exogenous auxin (IAA) and abscisic acid (ABA) treatment. The results showed that the effect of exogenous phytohormones had a greater impact on the LA of kn1 compared to B73. Transcriptome sequencing showed that genes involved in IAA, gibberellins (GAs) and brassinosteroids (BRs) showed different differential expression patterns in kn1 and B73. This study provides new insights into the mechanism of KN1 involved in the formation of maize LA, and provides a theoretical basis for breeding maize varieties with suitable LA.


Subject(s)
Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , RNA-Seq , Plant Proteins/metabolism , Plant Breeding , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Gene Expression Regulation, Plant
4.
Front Plant Sci ; 13: 961680, 2022.
Article in English | MEDLINE | ID: mdl-36388543

ABSTRACT

The present study investigated the brassinosteroid-induced drought resistance of contrasting drought-responsive maize genotypes at physiological and transcriptomic levels. The brassinosteroid (BR) contents along with different morphology characteristics, viz., plant height (PH), shoot dry weight (SDW), root dry weight (RDW), number of leaves (NL), the specific mass of the fourth leaf, and antioxidant activities, were investigated in two maize lines that differed in their degree of drought tolerance. In response to either control, drought, or brassinosteroid treatments, the KEGG enrichment analysis showed that plant hormonal signal transduction and starch and sucrose metabolism were augmented in both lines. In contrast, the phenylpropanoid biosynthesis was augmented in lines H21L0R1 and 478. Our results demonstrate drought-responsive molecular mechanisms and provide valuable information regarding candidate gene resources for drought improvement in maize crop. The differences observed for BR content among the maize lines were correlated with their degree of drought tolerance, as the highly tolerant genotype showed higher BR content under drought stress.

5.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563277

ABSTRACT

Maize plant type is one of the main factors determining maize yield, and leaf angle is an important aspect of plant type. The rice Loose Plant Architecture1 (LPA1) gene and Arabidopsis AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene are related to their leaf angle. However, the homologous ZmLPA1 in maize has not been studied. In this study, the changing of leaf angle, as well as gene expression in leaves in maize mutant lpa1 and wild-type 'B73' under different IAA concentrations were investigated. The regulation effect of IAA on the leaf angle of lpa1 was significantly stronger than that of the wild type. Transcriptome analysis showed that different exogenous IAA treatments had a common enrichment pathway-the indole alkaloid biosynthesis pathway-and among the differentially expressed genes, four genes-AUX1, AUX/IAA, ARF and SAUR-were significantly upregulated. This study revealed the regulation mechanism of ZmLPA1 gene on maize leaf angle and provided a promising gene resource for maize breeding.


Subject(s)
Arabidopsis , Oryza , Arabidopsis/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Oryza/genetics , Phylogeny , Plant Breeding , Plant Leaves/metabolism , Plant Proteins/metabolism , Zea mays
6.
Biotechnol Lett ; 44(3): 367-386, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35294695

ABSTRACT

Drought stress is one of the major abiotic stresses that limit growth, development and yield of maize crops. To better understand the responses of maize inbred lines with different levels of drought resistance and the molecular mechanism of exogenous glycine betaine (GB) in alleviating drought stress, the responses of two maize inbred lines to drought stress and to the stress-mitigating effects of exogenous GB were investigated. Seedling morphology, physiological and biochemical indexes, root cell morphology and root transcriptome expression profiles were compared between a drought-tolerant inbred line Chang 7-2 and drought-sensitive inbred line TS141. Plants of both lines were subjected to treatments of drought stress alone and drought stress with application of exogenous GB. The results showed that with the increase of drought treatment time, the growth and development of TS141 were inhibited, while those of Chang 7-2 were not significantly different from those of the control (no drought stress and GB). Compared with the corresponding data of the drought-stress group, every index measured from the two inbred lines indicated mitigating effects from exogenous GB, and TS141 produced stronger mitigating responses due to the GB. Transcriptome analysis showed that 562 differentially expressed genes (DEGs) were up-regulated and 824 DEGs were down-regulated in both inbred lines under drought stress. Due to the exogenous GB, 1061 DEGs were up-regulated and 424 DEGs were down-regulated in both lines. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify 10 DEGs screened from the different treatments. These results showed that the expression of 9 DEGs were basically consistent with their respective transcriptome expression profiles. The results of this study provide models of potential mechanisms of drought tolerance in maize as well as potential mechanisms of how exogenous GB may regulate drought tolerance.


Subject(s)
Droughts , Zea mays , Betaine/metabolism , Betaine/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcriptome , Zea mays/metabolism
7.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613631

ABSTRACT

Ubiquitin/proteasome-mediated proteolysis (UPP) plays a crucial role in almost all aspects of plant growth and development, proteasome subunit RPN10 mediates ubiquitination substrate recognition in the UPP process. The recognition pathway of ubiquitinated UPP substrate is different in different species, which indicates that the mechanism and function of RPN10 are different in different species. However, the homologous ZmRPN10 in maize has not been studied. In this study, the changing of leaf angle and gene expression in leaves in maize wild-type B73 and mutant rpn10 under exogenous brassinosteroids (BRs) were investigated. The regulation effect of BR on the leaf angle of rpn10 was significantly stronger than that of B73. Transcriptome analysis showed that among the differentially expressed genes, CRE1, A-ARR and SnRK2 were significantly up-regulated, and PP2C, BRI1 AUX/IAA, JAZ and MYC2 were significantly down-regulated. This study revealed the regulation mechanism of ZmRPN10 on maize leaf angle and provided a promising gene resource for maize breeding.


Subject(s)
Proteasome Endopeptidase Complex , Zea mays , RNA-Seq , Proteasome Endopeptidase Complex/metabolism , Plant Breeding , Plant Leaves/metabolism , Ubiquitin/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Front Plant Sci ; 12: 739101, 2021.
Article in English | MEDLINE | ID: mdl-34925395

ABSTRACT

The planting method of deep sowing can make the seeds make full use of water in deep soil, which is considered to be an effective way to respond to drought stress. However, deep sowing will affect the growth and development of maize (Zea mays L.) at seedling stage. To better understand the response of maize to deep sowing stress and the mechanism of exogenous hormones [Gibberellin (GA3), Brassinolide (BR), Strigolactone (SL)] alleviates the damaging effects of deep-sowing stress, the physiological and transcriptome expression profiles of seedlings of deep sowing sensitive inbred line Zi330 and the deep-tolerant inbred line Qi319 were compared under deep sowing stress and the conditions of exogenous hormones alleviates stress. The results showed that mesocotyl elongated significantly after both deep sowing stress and application of exogenous hormones, and its elongation was mainly through elongation and expansion of cell volume. Hormone assays revealed no significant changes in zeatin (ZT) content of the mesocotyl after deep sowing and exogenous hormone application. The endogenous GA3 and auxin (IAA) contents in the mesocotyl of the two inbred lines increased significantly after the addition of exogenous GA3, BR, and SL under deep sowing stress compared to deep sowing stress, while BR and SL decreased significantly. Transcriptome analysis showed that the deep seeding stress was alleviated by GA3, BR, and SLs, the differentially expressed genes (DEGs) mainly included cellulose synthase, expansin and glucanase, oxidase, lignin biosynthesis genes and so on. We also found that protein phosphatase 2C and GA receptor GID1 enhanced the ability of resist deep seeding stress in maize by participating in the abscisic acid (ABA) and the GA signaling pathway, respectively. In addition, we identified two gene modules that were significantly related to mesocotyl elongation, and identified some hub genes that were significantly related to mesocotyl elongation by WGCNA analysis. These genes were mainly involved in transcription regulation, hydrolase activity, protein binding and plasma membrane. Our results from this study may provide theoretical basis for determining the maize deep seeding tolerance and the mechanism by which exogenous hormones regulates deep seeding tolerance.

9.
PLoS One ; 15(5): e0233616, 2020.
Article in English | MEDLINE | ID: mdl-32470066

ABSTRACT

Salt stress is a common abiotic stress that limits the growth, development and yield of maize (Zea mays L.). To better understand the response of maize to salt stress and the mechanism by which exogenous glycine betaine (GB) alleviates the damaging effects of salt stress, the morphology, physiological and biochemical indexes, and root transcriptome expression profiles of seedlings of salt-sensitive inbred line P138 and salt-tolerant inbred line 8723 were compared under salt stress and GB-alleviated salt stress conditions. The results showed that under salt stress the growth of P138 was significantly inhibited and the vivo ion balance was disrupted, whereas 8723 could prevent salt injury by maintaining a high ratio of K+ to Na+. The addition of a suitable concentration of GB could effectively alleviate the damage caused by salt stress, and the mitigating effect on salt-sensitive inbred line P138 was more obvious than that on 8723. Transcriptome analysis revealed that 219 differentially expressed genes (DEGs) were up-regulated and 153 DEGs were down-regulated in both P138 and 8723 under NaCl treatment, and that 487 DEGs were up-regulated and 942 DEGs were down-regulated in both P138 and 8723 under salt plus exogenous GB treatment. In 8723 the response to salt stress is mainly achieved through stabilizing ion homeostasis, strong signal transduction activation, increasing reactive oxygen scavenging. GB alleviates salt stress in maize mainly by inducing gene expression changes to enhance the ion balance, secondary metabolic level, reactive oxygen scavenging mechanism, signal transduction activation. In addition, the transcription factors involved in the regulation of salt stress response and exogenous GB mitigation mainly belong to the MYB, MYB-related, AP2-EREBP, bHLH, and NAC families. We verified 10 selected up-regulated DEGs by quantitative real-time polymerase chain reaction (qRT-PCR), and the expression results were basically consistent with the transcriptome expression profiles. Our results from this study may provide the theoretical basis for determining maize salt tolerance mechanisms and the mechanism by which GB regulates salt tolerance.


Subject(s)
Betaine/metabolism , Salt Tolerance , Seedlings/genetics , Transcriptome , Zea mays/genetics , Gene Expression Regulation, Plant , Potassium/metabolism , Seedlings/physiology , Sodium/metabolism , Zea mays/physiology
10.
Int J Mol Sci ; 20(19)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554168

ABSTRACT

Salt stress is one of the key abiotic stresses that causes great loss of yield and serious decrease in quality in maize (Zea mays L.). Therefore, it is very important to reveal the molecular mechanism of salt tolerance in maize. To acknowledge the molecular mechanisms underlying maize salt tolerance, two maize inbred lines, including salt-tolerant 8723 and salt-sensitive P138, were used in this study. Comparative proteomics of seedling roots from two maize inbred lines under 180 mM salt stress for 10 days were performed by the isobaric tags for relative and absolute quantitation (iTRAQ) approach. A total of 1056 differentially expressed proteins (DEPs) were identified. In total, 626 DEPs were identified in line 8723 under salt stress, among them, 378 up-regulated and 248 down-regulated. There were 473 DEPs identified in P138, of which 212 were up-regulated and 261 were down-regulated. Venn diagram analysis showed that 17 DEPs were up-regulated and 12 DEPs were down-regulated in the two inbred lines. In addition, 8 DEPs were up-regulated in line 8723 but down-regulated in P138, 6 DEPs were down-regulated in line 8723 but up-regulated in P138. In salt-stressed 8723, the DEPs were primarily associated with phenylpropanoid biosynthesis, starch and sucrose metabolism, and the mitogen-activated protein kinase (MAPK) signaling pathway. Intriguingly, the DEPs were only associated with the nitrogen metabolism pathway in P138. Compared to P138, the root response to salt stress in 8723 could maintain stronger water retention capacity, osmotic regulation ability, synergistic effects of antioxidant enzymes, energy supply capacity, signal transduction, ammonia detoxification ability, lipid metabolism, and nucleic acid synthesis. Based on the proteome sequencing information, changes of 8 DEPs abundance were related to the corresponding mRNA levels by quantitative real-time PCR (qRT-PCR). Our results from this study may elucidate some details of salt tolerance mechanisms and salt tolerance breeding of maize.


Subject(s)
Plant Proteins/metabolism , Proteome , Proteomics , Salt Tolerance , Stress, Physiological , Zea mays/physiology , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Plant , Inbreeding , Phenotype , Plant Breeding , Plant Proteins/genetics , Proteomics/methods , Salt Tolerance/genetics , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological/genetics
11.
Int J Mol Sci ; 20(11)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181633

ABSTRACT

The growth and development of maize roots are closely related to drought tolerance. In order to clarify the molecular mechanisms of drought tolerance between different maize (Zea mays L.) varieties at the protein level, the isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics were used for the comparative analysis of protein expression in the seedling roots of the drought-tolerant Chang 7-2 and drought-sensitive TS141 maize varieties under 20% polyethylene glycol 6000 (PEG 6000)-simulated drought stress. We identified a total of 7723 differentially expressed proteins (DEPs), 1243 were significantly differentially expressed in Chang 7-2 following drought stress, 572 of which were up-regulated and 671 were down-regulated; 419 DEPs were identified in TS141, 172 of which were up-regulated and 247 were down-regulated. In Chang 7-2, the DEPs were associated with ribosome pathway, glycolysis/gluconeogenesis pathway, and amino sugar and nucleotide sugar metabolism. In TS141, the DEPs were associated with metabolic pathway, phenylpropanoid biosynthesis pathway, and starch and sucrose metabolism. Compared with TS141, the higher drought tolerance of Chang 7-2 root system was attributed to a stronger water retention capacity; the synergistic effect of antioxidant enzymes; the strengthen cell wall; the osmotic stabilization of plasma membrane proteins; the effectiveness of recycling amino acid; and an improvement in the degree of lignification. The common mechanisms of the drought stress response between the two varieties included: The promotion of enzymes in the glycolysis/gluconeogenesis pathway; cross-protection against the toxicity of aldehydes and ammonia; maintenance of the cell membrane stability. Based on the proteome sequencing information, the coding region sequences of eight DEP-related genes were analyzed at the mRNA level by quantitative real-time PCR (qRT-PCR). The findings of this study can inform the future breeding of drought-tolerant maize varieties.


Subject(s)
Droughts , Osmotic Pressure , Plant Proteins/metabolism , Proteome/metabolism , Zea mays/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Proteome/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL