Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Food Sci Biotechnol ; 33(8): 1899-1908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752109

ABSTRACT

Lactiplantibacillus plantarum M5 and Goji Berry extract were co-microencapsulated to maintain the activity of cells during gastrointestinal digestion, and the mechanism by which they could maintain high activity was investigated. The results showed that the microcapsules with 3% Goji Berry extract(A-GE-3) had the largest encapsulation efficiency(EE) of 92.41 ± 0.58%. SEM showed that the structure of A-GE-3 microcapsules were smoother and denser. Cell viability in A-GE-3 microcapsules remained at 7.17 log10 CFU/g after gastrointestinal digestion. Meanwhile, during the gastrointestinal digestion with 3% Goji Berry extract, cell membrane damage detected by fluorescent probes propidium iodide(PI) and 1.1-N-phenylnaphthylamine(NPN) was significantly reduced; the contents of arginine, glutamic acid and oleic acid in cell membrane were increased, which helped to maintain the dynamic balance of intracellular pH and regulated cell membrane fluidity in response to gastrointestinal environment. This study demonstrated the potential of Goji Berry extract as a probiotic protector in gastrointestinal digestion.

2.
ACS Synth Biol ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733342

ABSTRACT

NAD is a redox coenzyme and is the center of energy metabolism. In metabolic engineering modifications, an insufficient NAD(H) supply often limits the accumulation of target products. In this study, Candida glycerinogenes was found to be able to supply NAD(H) in large fluxes, up to 7.6 times more than Saccharomyces cerevisiae in aerobic fermentation. Aerobic fermentation in a medium without amino nitrogen sources demonstrated that C. glycerinogenes NAD synthesis was not dependent on NAD precursors in the medium. Inhibition by antisense RNA and the detection of transcript levels indicated that the main NAD supply pathway is the de novo biosynthesis pathway. It was further demonstrated that NAD(H) supply was unaffected by changes in metabolic flow through C. glycerinogenes ΔGPD aerobic fermentation (80 g/L ethanol). In conclusion, the ability of C. glycerinogenes to supply NAD(H) in large fluxes provides a new approach to solving the NAD(H) supply problem in synthetic biology.

3.
Front Microbiol ; 15: 1379688, 2024.
Article in English | MEDLINE | ID: mdl-38567071

ABSTRACT

Caffeic acid (CA) is a phenolic acid compound widely used in pharmaceutical and food applications. However, the efficient synthesis of CA is usually limited by the resources of individual microbial platforms. Here, a cross-kingdom microbial consortium was developed to synthesize CA from sugarcane bagasse hydrolysate using Escherichia coli and Candida glycerinogenes as chassis. In the upstream E. coli module, shikimate accumulation was improved by intensifying the shikimate synthesis pathway and blocking shikimate metabolism to provide precursors for the downstream CA synthesis module. In the downstream C. glycerinogenes module, conversion of p-coumaric acid to CA was improved by increasing the supply of the cytoplasmic cofactor FAD(H2). Further, overexpression of ABC transporter-related genes promoted efflux of CA and enhanced strain resistance to CA, significantly increasing CA titer from 103.8 mg/L to 346.5 mg/L. Subsequently, optimization of the inoculation ratio of strains SA-Ec4 and CA-Cg27 in this cross-kingdom microbial consortium resulted in an increase in CA titer to 871.9 mg/L, which was 151.6% higher compared to the monoculture strain CA-Cg27. Ultimately, 2311.6 and 1943.2 mg/L of CA were obtained by optimization of the co-culture system in a 5 L bioreactor using mixed sugar and sugarcane bagasse hydrolysate, respectively, with 17.2-fold and 14.6-fold enhancement compared to the starting strain. The cross-kingdom microbial consortium developed in this study provides a reference for the production of other aromatic compounds from inexpensive raw materials.

4.
J Sci Food Agric ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666395

ABSTRACT

BACKGROUND: Carboxypeptidase is an exopeptidase that hydrolyzes amino acids at the C-terminal end of the peptide chain and has a wide range of applications in food. However, in industrial applications, the relatively low catalytic efficiency of carboxypeptidases is one of the main limiting factors for industrialization. RESULTS: The study has enhanced the catalytic efficiency of Bacillus megaterium M32 carboxypeptidase (BmeCPM32) through semi-rational design. Firstly, the specific activity of the optimal mutant, BmeCPM32-M2, obtained through single-site mutagenesis and combinatorial mutagenesis, was 2.2-fold higher than that of the wild type (187.9 versus 417.8 U mg-1), and the catalytic efficiency was 2.9-fold higher (110.14 versus 325.75 s-1 mmol-1). Secondly, compared to the wild type, BmeCPM32-M2 exhibited a 1.8-fold increase in half-life at 60 °C, with no significant changes in its enzymatic properties (optimal pH, optimal temperature). Finally, BmeCPM32-M2 significantly increased the umami intensity of soy protein isolate hydrolysate by 55% and reduced bitterness by 83%, indicating its potential in developing tasty protein components. CONCLUSION: Our research has revealed that the strategy based on protein sequence evolution and computational residue mutation energy led to an improved catalytic efficiency of BmeCPM32. Molecular dynamics simulations have revealed that a smaller substrate binding pocket and increased enzyme-substrate affinity are the reasons for the enhanced catalytic efficiency. Furthermore the number of hydrogen bonds and solvent and surface area may contribute to the improvement of thermostability. Finally, the de-bittering effect of BmeCPM32-M2 in soy protein isolate hydrolysate suggests its potential in developing palatable protein components. © 2024 Society of Chemical Industry.

5.
ACS Synth Biol ; 13(3): 816-824, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38365187

ABSTRACT

Candida glycerinogenes is an industrial yeast with excellent multistress resistance. However, due to the diploid genome and the lack of meiosis and screening markers, its molecular genetic operation is limited. Here, a gene editing system using the toxin-antitoxin pair relBE from the type II toxin-antitoxin system in Escherichia coli as a screening marker was constructed. The RelBE complex can specifically and effectively regulate cell growth and arrest through a conditionally controlled toxin RelE switch, thereby achieving the selection of positive recombinants. The constructed editing system achieved precise gene deletion, replacement, insertion, and gene episomal expression in C. glycerinogenes. Compared with the traditional amino acid deficiency complementation editing system, this editing system produced higher biomass and the gene deletion efficiency was increased by 3.5 times. Using this system, the production of 2-phenylethanol by C. glycerinogenes was increased by 11.5-13.5% through metabolic engineering and tolerance engineering strategies. These results suggest that the stable gene editing system based on toxin-antitoxin pairs can be used for gene editing of C. glycerinogenes to modify metabolic pathways and promote industrial applications. Therefore, the constructed gene editing system is expected to provide a promising strategy for polyploid industrial microorganisms lacking gene manipulation methods.


Subject(s)
Antitoxins , Bacterial Toxins , Phenylethyl Alcohol , Pichia , Gene Editing/methods , Antitoxins/genetics , Bacterial Toxins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
6.
J Agric Food Chem ; 72(9): 4825-4833, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408332

ABSTRACT

Geraniol is an attractive natural monoterpene with significant industrial and commercial value in the fields of pharmaceuticals, condiments, cosmetics, and bioenergy. The biosynthesis of monoterpenes suffers from the availability of key intermediates and enzyme-to-substrate accessibility. Here, we addressed these challenges in Candida glycerinogenes by a plasma membrane-anchoring strategy and achieved sustainable biosynthesis of geraniol using bagasse hydrolysate as substrate. On this basis, a remarkable 2.4-fold improvement in geraniol titer was achieved by combining spatial and temporal modulation strategies. In addition, enhanced geraniol transport and modulation of membrane lipid-associated metabolism effectively promoted the exocytosis of toxic monoterpenes, significantly improved the resistance of the engineered strain to monoterpenes and improved the growth of the strains, resulting in geraniol yield up to 1207.4 mg L-1 at shake flask level. Finally, 1835.2 mg L-1 geraniol was obtained in a 5 L bioreactor using undetoxified bagasse hydrolysate. Overall, our study has provided valuable insights into the plasma membrane engineering of C. glycerinogenes for the sustainable and green production of valuable compounds.


Subject(s)
Monoterpenes , Pichia , Acyclic Monoterpenes/metabolism , Metabolic Engineering , Monoterpenes/metabolism
7.
J Agric Food Chem ; 72(3): 1630-1639, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194497

ABSTRACT

Glycerol is an important platform compound with multidisciplinary applications, and glycerol production using low-cost sugar cane bagasse hydrolysate is promising. Candida glycerinogenes, an industrial yeast strain known for its high glycerol production capability, has been found to thrive in bagasse hydrolysate obtained through a simple treatment without detoxification. The engineered C. glycerinogenes exhibited significant resistance to furfural, acetic acid, and 3,4-dimethylbenzaldehyde within undetoxified hydrolysates. To further enhance glycerol production, genetic modifications were made to Candida glycerinogenes to enhance the utilization of xylose. Fermentation of undetoxified bagasse hydrolysate by CgS45 resulted in a glycerol titer of 40.3 g/L and a yield of 40.4%. This process required only 1 kg of bagasse to produce 93.5 g of glycerol. This is the first report of glycerol production using lignocellulose, which presents a new way for environmentally friendly industrial production of glycerol.


Subject(s)
Candida , Glycerol , Pichia , Candida/metabolism , Lignin/metabolism , Fermentation , Saccharomyces cerevisiae/metabolism , Xylose
8.
Biotechnol J ; 19(1): e2300181, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37840403

ABSTRACT

The biosynthesis of 2-phenylethanol (2-PE) at high yields and titers is often limited by its toxicity. In this study, we describe the molecular mechanisms of 2-PE tolerance in the multi-stress tolerant industrial yeast, Candida glycerinogenes. They were different under 2-PE addition or fermentation conditions. After extracellular addition of 2-PE, C. glycerinogenes cells became rounder and bigger, which reduced specific surface area. However, during 2-PE fermentation C. glycerinogenes cells were smaller, which increased specific surface area. Other differences in the tolerance mechanisms were studied by analyzing the composition and molecular parameters of the cell membrane. Extracellular 2-PE stress resulted in down-regulation of transcriptional expression of unsaturated fatty acid synthesis genes. This raised the proportion of saturated fatty acids in the cell membrane, which increased rigidity of the cell membrane and reduced 2-PE entry to the cell. However, intracellular 2-PE stress resulted in up-regulation of transcriptional expression of unsaturated fatty acid synthesis genes, and increased the proportion of unsaturated fatty acids in the cell membrane; this in turn enhanced flexibility of the cell membrane which accelerated efflux of 2-PE. These contrasting mechanisms are mediated by transcriptional factors Hog1 and Swi5. Under 2-PE addition, C. glycerinogenes activated Hog1 and repressed Swi5 to upregulate erg5 and erg4 expression, which increased cell membrane rigidity and resisted 2-PE import. During 2-PE fermentation, C. glycerinogenes activated Hog1 and repressed Swi5 to upregulate 2-PE transporter proteins cdr1 and Acyl-CoA desaturase 1 ole1 to increase 2-PE export, thus reducing 2-PE intracellular toxicity. The results provide new insights into 2-PE tolerance mechanisms at the cell membrane level and suggest a novel strategy to improve 2-PE production by engineering anti-stress genes.


Subject(s)
Phenylethyl Alcohol , Pichia , Phenylethyl Alcohol/metabolism , Fermentation , Saccharomyces cerevisiae/genetics , Proteins/metabolism , Cell Membrane/metabolism , Fatty Acids, Unsaturated/metabolism
9.
ACS Synth Biol ; 13(1): 310-318, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38150419

ABSTRACT

As a desirable microbial cell factory, Pichia pastoris has garnered extensive utilization in metabolic engineering. Nevertheless, the lack of fine-tuned gene expression components has significantly constrained the potential scope of applications. Here, a gradient strength promoter library was constructed by random hybridization and high-throughput screening. The hybrid promoter, phy47, performed best with 2.93-fold higher GFP expression levels than GAP. The broad applicability of the novel hybrid promoter variants in biotechnological production was further validated in the biosynthesis of pinene and rHuPH20 with higher titers. The upstream regulatory sequences (UASE and URSD) were identified and applied to promoters GAP and ENO1, resulting in a 34 and 43% increase and an 18 and 37% decrease in the expression level, respectively. Yeast one-hybrid analysis showed that transcription factor HAP2 activates the hybrid promoter through a direct interaction with the crucial regulatory region UASH. Furthermore, a short segment of tunable activation sequence (20 bp) was also screened, and artificial promoters were constructed in tandem with the addition of regulatory sequence, resulting in a 61% expansion of the expression range. This study provides a molecular tool and regulatory elements for further synthetic biology research in P. pastoris.


Subject(s)
Pichia , Regulatory Sequences, Nucleic Acid , Saccharomycetales , Pichia/genetics , Pichia/metabolism , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/genetics , Gene Expression , Gene Expression Regulation, Fungal
10.
J Appl Microbiol ; 134(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37307223

ABSTRACT

AIMS: To investigate the effect of CgMCUR1 on the phenotype of Candida glycerinogenes and Saccharomyces cerevisiae. METHODS AND RESULTS: Inhibition of CgMCUR1 expression reduced acetate, H2O2, and high temperature tolerance of C. glycerinogenes. Expression of CgMCUR1 resulted in better acetic acid, H2O2, and high temperature tolerance in recombinant S. cerevisiae. Meanwhile, CgMCUR1 was able to enhance intracellular proline accumulation. The qRT-PCR analysis revealed that overexpression of CgMCUR1 affected proline metabolism in recombinant S. cerevisiae. The overexpression strain also showed reduced levels of cellular lipid peroxidation and an altered ratio of saturated fatty acid (SFA) to unsaturated fatty acid (UFA) in the cell membrane. The ethanol production of recombinant S. cerevisiae at high temperature was 30.9 g l-1, obtaining an increase of 12%, and the conversion rate was increased by 12%. In the undetoxified cellulose hydrolysate, the ethanol yield was 14.7 g l-1 at 30 h with an improvement of 18.5%, and the conversion rate was increased by 15.3%. CONCLUSIONS: Overexpression of CgMCUR1 rendered the acetic acid, H2O2, and high temperature tolerant of recombinant S. cerevisiae and enhanced the ethanol fermentation performance of recombinant S. cerevisiae under high temperature stress and in undetoxified cellulose hydrolysate by improving intracellular proline accumulation and by changing cellular physiological metabolism.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Hydrogen Peroxide/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ethanol/metabolism , Fermentation , Cellulose/metabolism , Acetic Acid/metabolism , Proline
11.
ACS Synth Biol ; 12(6): 1836-1844, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37271978

ABSTRACT

Geraniol is a class of natural products that are widely used in the aroma industry due to their unique aroma. Here, to achieve the synthesis of geraniol and alleviate the intense competition from the yeast ergosterol pathway, a transcription factor-mediated ergosterol feedback system was developed in this study to autonomously regulate ergosterol metabolism and redirect carbon flux to geraniol synthesis. In addition, the modification of ergosterol-responsive promoters, the optimization of transcription factor expression intensity, and stepwise metabolic engineering resulted in a geraniol titer of 531.7 mg L-1. For sustainable production of geraniol, we constructed a xylose assimilation pathway in Candida glycerinogenes (C. glycerinogenes). Then, the xylose metabolic capacity was ameliorated and the growth of the engineered strain was rescued by activating the pentose phosphate (PP) pathway. Finally, we obtained 1091.6, 862.4, and 921.8 mg L-1 of geraniol in a 5 L bioreactor by using pure glucose, simulated wheat straw hydrolysates, and simulated sugarcane bagasse hydrolysates, with yields of 47.5, 57.9, and 59.1 mg g-1 DCW, respectively. Our study demonstrated that C. glycerinogenes has the potential to produce geraniol from lignocellulosic biomass, providing a powerful tool for the sustainable synthesis of other valuable monoterpenes.


Subject(s)
Cellulose , Saccharum , Cellulose/metabolism , Metabolic Engineering/methods , Xylose/metabolism , Fermentation , Saccharum/metabolism , Transcription Factors/metabolism
12.
J Agric Food Chem ; 71(23): 8981-8990, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37254503

ABSTRACT

Caffeic acid is a phenolic acid compound widely applied in the food and pharmaceutical fields. Currently, one of the reasons for the low yield of caffeic acid biosynthesis is that the carbon flow enters mainly into the TCA cycle via pyruvate, which leads to low concentrations of erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP), the precursors of caffeic acid synthesis. Here, we developed a growth-coupled dual-layered dynamic regulation system. This system controls intracellular pyruvate supply in real time by responding to intracellular pyruvate and p-coumaric acid concentrations, autonomously coordinates pathway gene expression, and redirects carbon metabolism to balance cell growth and caffeic acid synthesis. Finally, our constructed engineered strain based on the dual-layered dynamic regulation system achieved a caffeic acid titer of 559.7 mg/L in a 5 L bioreactor. Thus, this study demonstrated the efficiency and potential of this system in boosting the yield of aromatic compounds.


Subject(s)
Caffeic Acids , Pyruvic Acid , Caffeic Acids/metabolism , Carbon
13.
J Agric Food Chem ; 71(13): 5250-5260, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36971258

ABSTRACT

α-Pinene is a naturally occurring monoterpene, which is widely used in fragrances, cosmetics, and foods. Due to the high cellular toxicity of α-pinene, this work considered the application of Candida glycerinogenes, an effective industrial strain with high resistance, in α-pinene synthesis. It was found that α-pinene-induced stress resulted in an intracellular accumulation of reactive oxygen species with an increased formation of squalene as a cytoprotective compound. As squalene is a downstream product in the mevalonate (MVA) pathway for α-pinene synthesis, a strategy based on the promotion of α-pinene and squalene co-production under α-pinene stress is proposed. By introducing the α-pinene synthesis pathway and enhancing the MVA pathway, the production of both α-pinene and squalene is increased. We have demonstrated that intracellular synthesis of α-pinene is effective in promoting squalene synthesis. The generation of intercellular reactive oxygen that accompanies α-pinene synthesis promotes squalene synthesis with a resultant cellular protection and upregulation of MVA pathway genes that facilitate α-pinene production. In addition, we have overexpressed phosphatase and introduced NPP as a substrate to synthesize α-pinene, where co-dependent fermentation yielded 208 mg/L squalene and 12.8 mg/L α-pinene. This work establishes a viable strategy to promote terpene-co-dependent fermentation based on stress.


Subject(s)
Monoterpenes , Monoterpenes/metabolism , Squalene/metabolism
14.
Biotechnol Appl Biochem ; 70(1): 403-414, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35638476

ABSTRACT

Pinene is a commercially important monoterpene that can be prepared using engineered bacterial and yeast species; however, high pinene levels can adversely affect the stability and permeability of microbial membranes leading to significantly reduced growth yields. This study reports that the fluidities and permeabilities of cell membranes of Candida glycerinogenes decrease as pinene levels increase resulting in adverse effects on cell growth. Exposure of cells to pinene results in upregulation of the genes encoding ergosterol and trehalose whose production helps stabilize their cell membranes. Exogenous addition of ergosterol and trehalose to pinene-treated cells also reduces the fluidity and permeability of the cell membrane, whilst also reducing production of intracellular reactive oxygen species. This led to the finding that the biomass of yeast cells cultivated in shake flask systems are improved by exogenous addition of trehalose and ergosterol. Overexpression of genes that encode trehalose and ergosterol produced a recombinant C. glycerinogenes strain that was found to tolerate higher concentrations of  pinene.


Subject(s)
Ergosterol , Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Ergosterol/metabolism , Cell Membrane , Pichia/metabolism
15.
J Biosci Bioeng ; 135(1): 10-16, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36253249

ABSTRACT

Due to the lack of available episomal plasmid, the improvement of many industrial strains, especially exogenous gene expression, is severely restricted. The failure of autonomous replication or low copy number of episomal plasmids is the main reason for the failure of many episomal plasmids construction. In this paper, Candida glycerinogenes, an industrial strain lacking episomal plasmids, was employed as the topic. A series of GFP-based plasmids containing autonomously replicating sequence (ARS) from different strain sources were constructed and analyzed for performance, and it was found that only the panARS from Kluyveromyces lactis compared with other nine low capacity ARSs proved to have the best performance and could be used to construct episomal plasmid. Further, the dual-ARS strategy was used to optimize the episomal plasmid, and the results indicated that only the dual-ARS plasmid +PPARS2 with double different ARSs, not the dual-ARS plasmid +panARS with double same ARSs, showed an improvement in all properties, with an increase in transformation efficiency of about 36% and a synchronous trend of fluorescence intensity and copy number, both by about 40%. In addition, constructed episomal plasmids were used to express the exogenous gene CrGES, and the fact that geraniol was found proved the versatility of the plasmids. The successful construction of episomal plasmids will also substantially facilitate genetic engineering research and industrial use of C. glycerinogenes in the future, as well as providing a feasible approach to create episomal plasmids for industrial strains.


Subject(s)
Pichia , Yeasts , Plasmids/genetics , Yeasts/genetics , Pichia/genetics , Genetic Engineering , Transformation, Genetic
16.
J Microbiol ; 60(12): 1191-1200, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279103

ABSTRACT

Terpenes have many applications and are widely found in nature, but recent progress in synthetic biology has enabled the use of microorganisms as chassis cells for the synthesis of these compounds. Candida glycerinogenes (C. glycerinogenes) is an industrial strain that may be developed as a chassis for the synthesis of terpenes since it has a tolerance to hyperosmolality and high sugar, and has a complete mevalonate (MVA) pathway. However, monoterpenes such as pinene are highly toxic, and the tolerance of C. glycerinogenes to pinene was investigated. We also measured the content of mevalonate and squalene to evaluate the strength of the MVA pathway. To determine terpene synthesis capacity, a pathway for the synthesis of pinene was constructed in C. glycerinogenes. Pinene production was improved by overexpression, gene knockdown and antisense RNA inhibition. Pinene production was mainly enhanced by strengthening the upstream MVA pathway and inhibiting the production of by-products from the downstream pathway. With these strategies, yield could be increased by almost 16 times, to 6.0 mg/L. Overall, we successfully constructed a pinene synthesis pathway in C. glycerinogenes and enhanced pinene production through metabolic modification.


Subject(s)
Biosynthetic Pathways , Mevalonic Acid , Mevalonic Acid/metabolism , Fermentation , Terpenes
17.
FEMS Microbiol Lett ; 369(1)2022 07 13.
Article in English | MEDLINE | ID: mdl-35731629

ABSTRACT

Substrate uptake and product export are important for microbial growth and product synthesis. Here, the glycerol uptake facilitator (GlpF) and the members of the resistance-nodulation-cell division (RND) type efflux system were overexpressed in Klebsiella pneumoniae to promote 1,3-propanediol (1,3-PDO) production. Overexpression of the endogenous K. pneumoniae GlpF improved glycerol dehydratase (GDHt) activity and promoted 1,3-PDO titer from 55.6 to 65.1 g/l. RND members AcrA and the AcrE had no impact on 1,3-PDO production. RND members AcrF and the TolC increased 1,3-PDO titer from 55.6 to 68.4 g/l and 65.4 g/l, respectively. MexB significantly decreased GDHt activity and 1,3-PDO titer. Notably, MexF dramatically enhanced GDHt activity and promoted 1,3-PDO titer and glycerol conversion rate to 74.0 g/l and 0.62 mol/mol, respectively. However, coexpression of the endogenous GlpF and MexF did not further improve 1,3-PDO production. The results present here provided novel information about the applications of the uptake of glycerol and the efflux of 1,3-PDO.


Subject(s)
Glycerol , Klebsiella pneumoniae , Fermentation , Klebsiella pneumoniae/genetics , Propylene Glycols
18.
ACS Synth Biol ; 11(5): 1835-1844, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35507528

ABSTRACT

Geraniol is a rose-scented monoterpene with significant commercial and industrial value in medicine, condiments, cosmetics, and bioenergy. Here, we first targeted geraniol as a reporter metabolite and explored the suitability and potential of Candida glycerinogenes as a heterologous host for monoterpenoid production. Subsequently, dual-pathway engineering was employed to improve the production of geraniol with a geraniol titer of 858.4 mg/L. We then applied a synthetic hybrid promoter approach to develop a decane-responsive hybrid promoter based on the native promoter PGAP derived from C. glycerinogenes itself. The hybrid promoter was able to be induced by n-decane with 3.6 times higher transcriptional intensity than the natural promoter PGAP. In particular, the hybrid promoter effectively reduces the conflict between cell growth and product formation in the production of geraniol. Ultimately, 1194.6 mg/L geraniol was obtained at the shake flask level. The strong and tunable decane-responsive hybrid promoter developed in this study provides an important tool for fine regulation of toxic terpenoid production in cells.


Subject(s)
Metabolic Engineering , Monoterpenes , Acyclic Monoterpenes , Alkanes , Pichia
19.
Curr Microbiol ; 79(7): 196, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35595863

ABSTRACT

Cellulose is one of the main raw materials for production of green ethanol, but the presence of the growth inhibitor furfural in non-detoxified lignocellulosic hydrolysates often seriously affects their utilization. In a previous study, we obtained strains of Candida glycerinogenes that were tolerant to furfural, but at concentrations above 2.5 g L-1 there was a significant increase in the growth lag phase. In this work, transcription factor genes (SEF1, STB5, CAS5, and ETP1) associated with furfural tolerance were identified and employed to obtain modified strains permitting ethanol fermentation of concentrated and non-detoxified cellulose hydrolysates containing more than 2.5 g L-1 furfural. Tolerance to furfural could be increased to 4.5 g L-1 by overexpression of either STB5 or ETP1, which have different regulation patterns. Moreover, in non-detoxified and concentrated cellulose hydrolysate, overexpression of ETP1 significantly shortened the growth lag phase and ethanol fermentation time was reduced by 17-20%. In batch fermentations fed with concentrated non-detoxified lignocellulose hydrolysate, ethanol productivity and maximum ethanol concentration reached 2.4 g L-1 h-1 and 72.5 g L-1, increases of 26.1% and 6.6%, respectively. The results provided a route for the economic use of lignocellulose for chemical production.


Subject(s)
Cellulose , Furaldehyde , Cellulose/metabolism , Ethanol , Fermentation , Furaldehyde/pharmacology , Hydrolysis , Pichia , Transcription Factors/genetics
20.
ACS Synth Biol ; 11(2): 900-908, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35138824

ABSTRACT

Caffeic acid (CA), a natural phenolic compound, has important medicinal value and market potential. In this study, we report a metabolic engineering strategy for the biosynthesis of CA in Candida glycerinogenes using xylose and glucose. The availability of precursors was increased by optimization of the shikimate (SA) pathway and the aromatic amino acid pathway. Subsequently, the carbon flux into the SA pathway was maximized by introducing a xylose metabolic pathway and optimizing the xylose assimilation pathway. Eventually, a high yielding strain CG19 was obtained, which reached a yield of 4.61 mg/g CA from mixed sugar, which was 1.2-fold higher than that of glucose. The CA titer in the 5 L bioreactor reached 431.45 mg/L with a yield of 8.63 mg/g of mixed sugar. These promising results demonstrate the great advantages of mixed sugar over glucose for high-yield production of CA. This is the first report to produce CA in C. glycerinogenes with xylose and glucose as carbon sources, which developed a promising strategy for the efficient production of high-value aromatic compounds.


Subject(s)
Glucose , Xylose , Caffeic Acids , Fermentation , Glucose/metabolism , Metabolic Engineering/methods , Pichia , Xylose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...