Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(16): 10021-10028, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33870989

ABSTRACT

7,7'-Disubstituted 2,2'-methylenedioxy-1,1'-binaphthyls are highly efficient chirality inducers in nematic liquid crystals. The absolute configuration of these compounds is, however, hard to determine as they only crystallize as racemic mixtures. In this work a Vibrational Circular Dichroism (VCD) study is reported that provides an unambiguous determination of the absolute configuration of these compounds. An in-depth General Coupled Oscillator (GCO) analysis of the source of the VCD signal reveals that the unusual structure of these binaphthyl compounds inherently leads to strong and robust VCD bands. Combined with linear transit calculations, our VCD studies allow for the determination of key structural parameters.

2.
ACS Catal ; 10(21): 12716-12726, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33194302

ABSTRACT

Molecular understanding of the electrochemical oxidation of metals and the electro-reduction of metal oxides is of pivotal importance for the rational design of catalyst-based devices where metal(oxide) electrodes play a crucial role. Operando monitoring and reliable identification of reacting species, however, are challenging tasks because they require surface-molecular sensitive and specific experiments under reaction conditions and sophisticated theoretical calculations. The lack of molecular insight under operating conditions is largely due to the limited availability of operando tools and to date still hinders a quick technological advancement of electrocatalytic devices. Here, we present a combination of advanced density functional theory (DFT) calculations considering implicit solvent contributions and time-resolved electrochemical surface-enhanced Raman spectroscopy (EC-SERS) to identify short-lived reaction intermediates during the showcase electro-reduction of Au oxide (AuOx) in sulfuric acid over several tens of seconds. The EC-SER spectra provide evidence for temporary Au-OH formation and for the asynchronous adsorption of (bi)sulfate ions at the surface during the reduction process. Spectral intensity fluctuations indicate an OH/(bi)sulfate turnover period of 4 s. As such, the presented EC-SERS potential jump approach combined with implicit solvent DFT simulations allows us to propose a reaction mechanism and prove that short-lived Au-OH intermediates also play an active role during the AuOx electro-reduction in acidic media, implying their potential relevance also for other electrocatalytic systems operating at low pH, like metal corrosion, the oxidation of CO, HCOOH, and other small organic molecules, and the oxygen evolution reaction.

3.
J Chem Phys ; 150(4): 041709, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30709299

ABSTRACT

Infrared spectroscopy is a widely employed analytical tool in (electrochemical) surface science as the spectra contain a wealth of information about the interaction of interfacial adsorbates with their environment. Separating and quantifying individual contributions, for example, of co-adsorbates, the substrate or electric field effects, on the overall spectral response, however, is often non-trivial as the various interactions manifest themselves in similar spectral behavior. Here, we present an experimental approach to differentiate between and quantify potential-induced coverage dependence and field-related Stark effects observed in a sulfate band shift of 93.5 ± 1.5 cm-1/V in electrochemical infrared spectra of the showcase sulfate/Au(111) interface. In combination with a simple linear model equation used to describe the potential-induced peak shift of the sulfate stretch vibration, we determine the coverage dependence contribution to be 15.6 ± 1.2 cm-1/θSO and the Stark effect to amount to 75.6 ± 2.7 cm-1/V. Our work provides a novel route to gain fundamental insight into interfacial adsorbate interactions in electrochemical surface science.

4.
Chem Commun (Camb) ; 50(100): 15975-8, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25384081

ABSTRACT

We report an electrochemical gating approach with ∼100% efficiency to tune the conductance of single-molecule 4,4'-bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi-level, switching the molecule from an off resonance state to "partial" resonance.

5.
Phys Chem Chem Phys ; 16(40): 22229-36, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25212846

ABSTRACT

A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.


Subject(s)
Electrochemical Techniques , Geobacter/cytology , Gold/chemistry , Silver/chemistry , Electrodes , Electrolytes/chemistry , Electron Transport , Geobacter/chemistry , Molecular Structure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL