Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomater Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808607

ABSTRACT

The clustered regularly interspaced short palindromic repeat (CRISPR) system, an emerging tool for genome editing, has garnered significant public interest for its potential in treating genetic diseases. Despite the rapid advancements in CRISPR technology, the progress in developing effective delivery strategies lags, impeding its clinical application. Extracellular nanovesicles (EVs), either in their endogenous forms or with engineered modifications, have emerged as a promising solution for CRISPR delivery. These EVs offer several advantages, including high biocompatibility, biological permeability, negligible immunogenicity, and straightforward production. Herein, we first summarize various types of functional EVs for CRISPR delivery, such as unmodified, modified, engineered virus-like particles (VLPs), and exosome-liposome hybrid vesicles, and examine their distinct intracellular pathways. Then, we outline the cutting-edge techniques for functionalizing extracellular vesicles, involving producer cell engineering, vesicle engineering, and virus-like particle engineering, emphasizing the diverse CRISPR delivery capabilities of these nanovesicles. Lastly, we address the current challenges and propose rational design strategies for their clinical translation, offering future perspectives on the development of functionalized EVs.

2.
Adv Sci (Weinh) ; 11(17): e2309899, 2024 May.
Article in English | MEDLINE | ID: mdl-38380546

ABSTRACT

The emerging stem cell-derived hepatocyte-like cells (HLCs) are the alternative cell sources of hepatocytes for treatment of highly lethal acute liver failure (ALF). However, the hostile local environment and the immature cell differentiation may compromise their therapeutic efficacy. To this end, human adipose-derived mesenchymal stromal/stem cells (hASCs) are engineered into different-sized multicellular spheroids and co-cultured with 3D coaxially and hexagonally patterned human umbilical vein endothelial cells (HUVECs) in a liver lobule-like manner to enhance their hepatic differentiation efficiency. It is found that small-sized hASC spheroids, with a diameter of ≈50 µm, show superior pro-angiogenic effects and hepatic differentiation compared to the other counterparts. The size-dependent functional enhancements are mediated by the Wnt signaling pathway. Meanwhile, co-culture of hASCs with HUVECs, at a HUVECs/hASCs seeding density ratio of 2:1, distinctly promotes hepatic differentiation and vascularization both in vitro and in vivo, especially when endothelial cells are patterned into hollow hexagons. After subcutaneous implantation, the mini-liver, consisting of HLC spheroids and 3D-printed interconnected vasculatures, can effectively improve liver regeneration in two ALF animal models through amelioration of local oxidative stress and inflammation, reduction of liver necrosis, as well as increase of cell proliferation, thereby showing great promise for clinical translation.


Subject(s)
Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , Printing, Three-Dimensional , Spheroids, Cellular , Spheroids, Cellular/cytology , Humans , Animals , Mesenchymal Stem Cells/cytology , Mice , Cell Differentiation/physiology , Tissue Engineering/methods , Liver , Hepatocytes/cytology , Disease Models, Animal , Liver Failure/therapy , Coculture Techniques/methods
3.
Biomaterials ; 302: 122349, 2023 11.
Article in English | MEDLINE | ID: mdl-37844429

ABSTRACT

Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Liver Neoplasms/therapy , Nanomedicine , Tyrosine
4.
Sci Adv ; 9(32): eadh2413, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556535

ABSTRACT

Equipping multiple functionalities on adoptive effector cells is essential to overcome the complex immunological barriers in solid tumors for superior antitumor efficacy. However, current cell engineering technologies cannot endow these functionalities to cells within a single step because of the different spatial distributions of targets in one cell. Here, we present a core-shell anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) to achieve one-step multiplexing cell engineering for multifunctional cell construction. Through fusing with the M1 macrophage membrane, ARMFUL inserts an anti-CD47 (aCD47)-modified lipid shell onto the surface and simultaneously delivers colony-stimulating factor 1 receptor inhibitor BLZ945-loaded core into the cytoplasm. The surface-presenting aCD47 boosts macrophage's phagocytosis against the tumor by blocking CD47. The cytoplasm-located BLZ945 prompts its polarization resistance to M2 phenotype in the immunosuppressive microenvironment via inactivating the intracellular M2 polarization signaling pathway. This ARMFUL provides a versatile cell engineering platform to customize multimodal cellular functions for enhanced adoptive cell therapy.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/metabolism , Immunotherapy, Adoptive , Cell Line, Tumor , Phagocytosis , Macrophages/metabolism , Neoplasms/metabolism , Tumor Microenvironment
5.
Biomaterials ; 294: 122014, 2023 03.
Article in English | MEDLINE | ID: mdl-36709644

ABSTRACT

Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.


Subject(s)
Hepatocytes , Liver Failure, Acute , Mice , Animals , Liver Failure, Acute/therapy , Spheroids, Cellular , Physical Phenomena , Magnetic Phenomena
7.
Med Oncol ; 39(2): 26, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34982265

ABSTRACT

Among the various histologic subtypes of ovarian cancers (OCs), ovarian clear cell carcinoma (OCCC) represents a great challenge due to its disease aggressiveness and resistance to chemotherapy. IGF1 is overexpressed in epithelial ovarian cancer (EOC), and IGF1 pathway activation is related to the chemoresistance of various cancers. In this study, we found that the expression level of IGF1 was higher in OCCC than in the most common type of OC, high-grade serous adenocarcinoma (HGSC). Then, we investigated the role of IGF1 pathway activation in the progression of OCCC, observing that activation of the IGF1 pathway using IGF1 promoted the proliferation and migration of ES2 cells, while inactivation of the IGF1 pathway using the selective IGF1R inhibitor OSI-906 reversed the alteration mediated by IGF1. Based on the role of the IGF1 pathway in cancer chemoresistance, we proposed that OSI-906 may restore the sensitivity of OCCC to cisplatin. We first validated that IGF1 increased the IC50 value of cisplatin in ES2 cells, while OSI-906 decreased it. Then we confirmed that IGF1 decreased the apoptosis rate of ES2 cells induced by cisplatin, while OSI-906 increased it. Finally, we conducted animal experiments to investigate whether OSI-906 helps cisplatin control the growth of OCCC. As expected, OSI-906 increased the effect of cisplatin in attenuating the growth of OCCC in vivo. Therefore, we conclude that using OSI-906 may be an effective method to restore the sensitivity of OCCC to cisplatin by targeting the IGF1R/AKT pathway.


Subject(s)
Adenocarcinoma, Clear Cell/drug therapy , Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Imidazoles/pharmacology , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/drug effects , Pyrazines/pharmacology , Receptor, IGF Type 1/drug effects , Adenocarcinoma, Clear Cell/metabolism , Adenocarcinoma, Clear Cell/pathology , Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Drug Resistance , Female , Mice, Inbred BALB C , Mice, Nude , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects
8.
Signal Transduct Target Ther ; 6(1): 238, 2021 06 20.
Article in English | MEDLINE | ID: mdl-34148061

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) gene editing technology, as a revolutionary breakthrough in genetic engineering, offers a promising platform to improve the treatment of various genetic and infectious diseases because of its simple design and powerful ability to edit different loci simultaneously. However, failure to conduct precise gene editing in specific tissues or cells within a certain time may result in undesirable consequences, such as serious off-target effects, representing a critical challenge for the clinical translation of the technology. Recently, some emerging strategies using genetic regulation, chemical and physical strategies to regulate the activity of CRISPR/Cas9 have shown promising results in the improvement of spatiotemporal controllability. Herein, in this review, we first summarize the latest progress of these advanced strategies involving cell-specific promoters, small-molecule activation and inhibition, bioresponsive delivery carriers, and optical/thermal/ultrasonic/magnetic activation. Next, we highlight the advantages and disadvantages of various strategies and discuss their obstacles and limitations in clinical translation. Finally, we propose viewpoints on directions that can be explored to further improve the spatiotemporal operability of CRISPR/Cas9.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Transfer Techniques , Genetic Therapy , Animals , Humans
9.
Water Res ; 174: 115635, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32114018

ABSTRACT

In this study, we investigated how the desorption and degradation processes of radiolabeled benzo[a]pyrene (BaP) that was aged in various marine sediments were influenced by sedimentary organic matter properties. The stable OC fraction (STOC) and the demineralized fraction (DM) were isolated and characterized via advanced solid-state 13C nuclear magnetic resonance spectroscopy (NMR) and a CO2 gas adsorption technique, respectively. Sodium persulfate preferentially removed the unstable OC fractions (USOC) and the aromatic C groups, and the residual STOC fractions were enriched with aliphatic C groups. The aliphatic C showed stronger resistance to degradation by persulfate than that of the aromatic C. A first-order kinetic model described the degradation process by sodium persulfate solutions very well (R2 > 0.997). The desorption percentages, degradation percentages and rates k (h-1) of BaP gradually decreased from the estuarine sediments to the offshore marine sediments and were highly significantly and negatively correlated with STOC-bulk, Faliph-bulk, and Vo-bulk (R2>0.903, p < 0.01). It was demonstrated that sodium persulfate degraded not only desorbed BaP but also a portion of the bound BaP fraction that was difficult to desorb. The BaP fractions that sorbed on USOC were degraded initially; then, the fractions of BaP that were released from STOC were degraded. This study demonstrated the important roles of STOC, aliphatic moieties, and micropores in the degradation process of BaP during the Na2S2O8 treatment of the sediments.


Subject(s)
Benzo(a)pyrene , Geologic Sediments , Adsorption , Kinetics , Oxidative Stress
10.
Water Res ; 159: 414-422, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31121409

ABSTRACT

We investigated how the degradation of 7-14C-BaP aged in sediments by H2O2 treatment was influenced by the chemical structures, compositions, and microporosity of sedimentary organic carbon (SOC). Unstable OC (USOC), stable OC (STOC), mineral-protected OC (MOC), and chemically resistant OC (ROC) fractions were fractionated. The chemical structures and microporosity of the ROC fractions were characterized by 13C solid-state nuclear magnetic resonance (NMR) and CO2 adsorption technique, respectively. A first-order, two-compartment kinetics model described the degradation process very well (R2 > 0.980). The BaP degradation ratios increased with the increasing USOC contents and decreased with the increasing ROC contents. The BaP parent compound in the aqueous solution was almost completely degraded. The considerable portions of oxidized intermediates were detected in different SOC fractions, which represented either oxidized intermediates or parent compounds. The very good multivariate regressions among the degradation kinetics parameters, SOC structures and micropore volumes demonstrated that ROC-bulk, aliphatic moieties, and microporosity played crucial roles in protecting sorbed BaP from being degraded by H2O2. The results showed that ROC, aliphatic moieties, and microporosity played vital roles in Bap degradation process in sediments during H2O2 treatment, which is reported for the first time in this study.


Subject(s)
Benzo(a)pyrene , Hydrogen Peroxide , Adsorption , Carbon , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...