Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1189642, 2023.
Article in English | MEDLINE | ID: mdl-37235004

ABSTRACT

Barley landraces accumulated variation in adapting to extreme highland environments during long-term domestication in Tibet, but little is known about their population structure and genomic selection traces. In this study, tGBS (tunable genotyping by sequencing) sequencing, molecular marker and phenotypic analyses were conducted on 1,308 highland and 58 inland barley landraces in China. The accessions were divided into six sub-populations and clearly distinguished most six-rowed, naked barley accessions (Qingke in Tibet) from inland barley. Genome-wide differentiation was observed in all five sub-populations of Qingke and inland barley accessions. High genetic differentiation in the pericentric regions of chromosomes 2H and 3H contributed to formation of five types of Qingke. Ten haplotypes of the pericentric regions of 2H, 3H, 6H and 7H were further identified as associated with ecological diversification of these sub-populations. There was genetic exchange between eastern and western Qingke but they shared the same progenitor. The identification of 20 inland barley types indicated multiple origins of Qingke in Tibet. The distribution of the five types of Qingke corresponded to specific environments. Two predominant highland-adaptative variations were identified for low temperature tolerance and grain color. Our results provide new insights into the origin, genome differentiation, population structure and highland adaptation in highland barley which will benefit both germplasm enhancement and breeding of naked barley.

2.
Mol Biol Evol ; 39(6)2022 06 02.
Article in English | MEDLINE | ID: mdl-35642306

ABSTRACT

As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.


Subject(s)
Altitude , Transcriptome , Acclimatization/genetics , Female , Hemoglobins/genetics , Humans , Hypoxia/metabolism , Placenta/metabolism , Pregnancy , Reproduction , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...