Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 141(6): 645-658, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36223592

ABSTRACT

The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.


Subject(s)
Induced Pluripotent Stem Cells , Proteome , Animals , Humans , Zebrafish , Human Genetics , Mammals , Adaptor Proteins, Signal Transducing
2.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35499078

ABSTRACT

The relevance of molecular mechanisms governing mitochondrial proteostasis to the differentiation and function of hematopoietic and immune cells is largely elusive. Through dissection of the network of proteins related to HCLS1-associated protein X-1, we defined a potentially novel functional CLPB/HAX1/(PRKD2)/HSP27 axis with critical importance for the differentiation of neutrophil granulocytes and, thus, elucidated molecular and metabolic mechanisms underlying congenital neutropenia in patients with HAX1 deficiency as well as bi- and monoallelic mutations in CLPB. As shown by stable isotope labeling by amino acids in cell culture (SILAC) proteomics, CLPB and HAX1 control the balance of mitochondrial protein synthesis and persistence crucial for proper mitochondrial function. Impaired mitochondrial protein dynamics are associated with decreased abundance of the serine-threonine kinase PRKD2 and HSP27 phosphorylated on serines 78 and 82. Cellular defects in HAX1-/- cells can be functionally reconstituted by HSP27. Thus, mitochondrial proteostasis emerges as a critical molecular and metabolic mechanism governing the differentiation and function of neutrophil granulocytes.


Subject(s)
Neutrophils , Proteostasis , Adaptor Proteins, Signal Transducing/genetics , Granulocytes/metabolism , HSP27 Heat-Shock Proteins/metabolism , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Neutrophils/metabolism
3.
Front Immunol ; 10: 497, 2019.
Article in English | MEDLINE | ID: mdl-30936881

ABSTRACT

B-cell development and function depend on stage-specific signaling through the B-cell antigen receptor (BCR). Signaling and intracellular trafficking of the BCR are connected, but the molecular mechanisms of this link are incompletely understood. Here, we investigated the role of the endosomal adaptor protein and member of the LAMTOR/Ragulator complex LAMTOR2 (p14) in B-cell development. Efficient conditional deletion of LAMTOR2 at the pre-B1 stage using mb1-Cre mice resulted in complete developmental arrest. Deletion of LAMTOR2 using Cd19-Cre mice permitted analysis of residual B cells at later developmental stages, revealing that LAMTOR2 was critical for the generation and activation of mature B lymphocytes. Loss of LAMTOR2 resulted in aberrant BCR signaling due to delayed receptor internalization and endosomal trafficking. In conclusion, we identify LAMTOR2 as critical regulator of BCR trafficking and signaling that is essential for early B-cell development in mice.


Subject(s)
B-Lymphocytes/immunology , Endosomes/metabolism , Proteins/immunology , Receptors, Antigen, B-Cell/immunology , Animals , B-Lymphocytes/ultrastructure , Calcium Signaling , Cell Division , DNA-Binding Proteins/deficiency , Lymphocyte Activation , Lymphopoiesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Protein Transport , Signal Transduction , Specific Pathogen-Free Organisms , V(D)J Recombination
4.
Immunol Cell Biol ; 94(8): 741-6, 2016 09.
Article in English | MEDLINE | ID: mdl-27089939

ABSTRACT

Expression of microRNA miR-181a/b-1 is critical for intrathymic development of invariant natural killer T (iNKT) cells. However, the underlying mechanism has remained a matter of debate. On the one hand, growing evidence suggested that miR-181a/b-1 is instrumental in setting T-cell receptor (TCR) signaling threshold and thus permits agonist selection of iNKT cells through high-affinity TCR ligands. On the other hand, alterations in metabolic fitness mediated by miR-181a/b-1-dependent dysregulation of phosphatase and tensin homolog (Pten) have been proposed to cause the iNKT-cell defect in miR-181-a/b-1-deficient mice. To re-assess the hypothesis that modulation of TCR signal strength is the key mechanism by which miR-181a/b-1 controls the development of iNKT cells, we generated miR-181a/b-1-deficient mice expressing elevated levels of a Vα14Jα18 TCRα chain. In these mice, development of iNKT cells was fully restored. Furthermore, both subset distribution of iNKT cells as well as TCR Vß repertoire were independent of the presence of miR-181a/b-1 once a Vα14Jα18 TCRα chain was overexpressed. Finally, levels of Pten protein were similar in Vα14Jα18 transgenic mice irrespective of their miR-181a/b-1 status. Collectively, our data support a model in which miR-181 promotes development of iNKT cells primarily by generating a permissive state for agonist selection with alterations in metabolic fitness possibly constituting a secondary effect.


Subject(s)
MicroRNAs/metabolism , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Animals , Cell Polarity , Lymphocyte Subsets/immunology , Mice, Transgenic , MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...