Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Phys Rev Lett ; 132(24): 246503, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949334

ABSTRACT

Novel critical phenomena beyond the Landau-Ginzburg-Wilson paradigm have been long sought after. Among many candidate scenarios, the deconfined quantum critical point (DQCP) constitutes the most fascinating one, and its lattice model realization has been debated over the past two decades. Here we apply the spherical Landau level regularization upon the exact (2+1)D SO(5) nonlinear sigma model with a topological term to study the potential DQCP therein. We perform a density matrix renormalization group (DMRG) simulation with SU(2)_{spin}×U(1)_{charge}×U(1)_{angular-momentum} symmetries explicitly implemented. Using crossing point analysis for the critical properties of the DMRG data, accompanied by quantum Monte Carlo simulations, we accurately obtain the comprehensive phase diagram of the model and find various novel quantum phases, including Néel, ferromagnet (FM), valence bond solid (VBS), valley polarized (VP) states and a gapless quantum disordered phase occupying an extended area of the phase diagram. The VBS-disorder and Néel-disorder transitions are continuous with non-Wilson-Fisher exponents. Our results show the VBS and Néel states are separated by either a weakly first-order transition or the disordered region with a multicritical point in between, thus opening up more interesting questions on the two-decade long debate on the nature of the DQCP.

2.
Theriogenology ; 226: 350-362, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38968678

ABSTRACT

Although lipid metabolism in fetal livers under intrauterine growth restriction (IUGR) conditions has been widely studied, the implications of maternal undernutrition on fetal hepatic lipid metabolism, lipotoxic injury, and abnormal development remain largely unknown. Therefore, this study investigated the effects of maternal undernutrition on disordered hepatic lipid metabolism, lipotoxic injury, and abnormal development in IUGR sheep fetuses using transcriptome analysis. Seventeen singleton ewes were randomly divided into three groups on day 90 of pregnancy: a control group (CG; 0.63 MJ metabolic energy/body weight (ME/BW)0.75/day, n = 5), maternal undernutrition group 1 (MU1; 0.33 MJ ME/BW0.75/day, n = 6), and maternal undernutrition group 2 (MU2; 0.20 MJ ME/BW0.75/day, n = 6). The fetuses were euthanized and recovered on day 130 of pregnancy. The levels of free fatty acids (FFA) in maternal blood (P < 0.01), fetal blood (P < 0.01), and fetal livers (P < 0.05) were increased in the MU1 and MU2 groups, but fetal hepatic triglyceride (TG) levels in the MU2 group (P < 0.01) and ß-hydroxybutyrate levels in the MU1 and MU2 groups (P < 0.01) were decreased compared to the CG. Severe inflammatory cell infiltration and increased non-alcoholic fatty liver disease activity scores were observed in MU1 and MU2 fetuses (P < 0.01). Progressive deposition of fetal hepatic reticular fibers and collagen fibers in the fetal livers of the MU1 and MU2 groups and significant hepatic fibrosis were observed in the MU2 fetuses (P < 0.05). Gene set enrichment analysis showed that genes involved in lipid accumulation and FFA beta oxidation were downregulated in both MU groups compared to those in the controls. The fetal liver mRNA expression of the ß-oxidation regulator, acetyl-CoA acetyltransferase 1, and the TCA regulator, isocitrate dehydrogenase were reduced in MU1 (P < 0.05) and MU2 (P < 0.01) fetuses, and downregulated mRNA expression of long chain fatty acid CoA ligase 1 (P < 0.05) and glycerol-3-phosphate acyltransferase (P < 0.01) was observed in MU2 fetuses. Differentially expressed genes (DEGs) in MU1 versus CG (360 DEGs) and MU2 versus CG (746 DEGs) were identified using RNA sequencing. Bioinformatics analyses of the 231 intersecting DEGs between MU1 versus CG and MU2 versus CG indicated that neutrophil extracellular traps (NETs) were induced and played a central role in fetal hepatic injury in IUGR sheep. Increased maternal blood myeloperoxidase (MPO) levels (P < 0.01), NE (Elane)-positive areas in fetal liver sections (P < 0.05), and fetal liver MPO protein expression (P < 0.01) were found in the MU1 and MU2 groups; however, MPO levels were reduced in the fetal membrane (P < 0.01) and fetal blood (P < 0.05) in the MU1 group, and in the maternal-fetal placenta and fetal blood in the MU2 group (P < 0.01). Analysis of gene expression trends in the intersecting DEGs between MU1 versus CG (129 DEGs) and MU2 versus CG (515 DEGs) further revealed that 30 hub genes were essential regulators of the G2/M cell cycle, all of which were associated with hepatocellular carcinoma. G0/G1 phase cells of the fetal liver were reduced in the MU1 (P < 0.05) and MU2 (P < 0.01) groups, whereas G2/M phase cells were elevated in the MU1 and MU2 groups (P < 0.01). The representatives of upregulated hub genes and fetal liver protein expression of maternal embryonic leucine zipper kinase and protein regulator of cytokinesis 1 were progressively enhanced in the MU1 and MU2 groups (P < 0.01), and topoisomerase II alpha protein expression in the MU2 group (P < 0.05), as expected. These results indicate that FFA overload, severe lipotoxic injury, and NETs were induced, and disease-promoting regulators of the G2/M cell cycle were upregulated in the fetal liver of IUGR sheep. These findings provide new insights into the pathogenesis of impaired hepatic lipid metabolism and abnormal development and the molecular origin of post-natal liver disease in IUGR due to maternal undernutrition. This information can support the development of new therapeutic strategies.

3.
Leukemia ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969731

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy arising from immature thymocytes. Unlike well-known oncogenic transcription factors, such as NOTCH1 and MYC, the involvement of chromatin remodeling factors in T-ALL pathogenesis is poorly understood. Here, we provide compelling evidence on how SWI/SNF chromatin remodeling complex contributes to human T-ALL pathogenesis. Integrative analysis of transcriptomic and ATAC-Seq datasets revealed high expression of SMARCA4, one of the subunits of the SWI/SNF complex, in T-ALL patient samples and cell lines compared to normal T cells. Loss of SMARCA protein function resulted in apoptosis induction and growth inhibition in multiple T-ALL cell lines. ATAC-Seq analysis revealed a massive reduction in chromatin accessibility across the genome after the loss of SMARCA protein function. RUNX1 interacts with SMARCA4 protein and co-occupies the same genomic regions. Importantly, the NOTCH1-MYC pathway was primarily affected when SMARCA protein function was impaired, implicating SWI/SNF as a novel therapeutic target.

4.
Exp Dermatol ; 33(7): e15128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973249

ABSTRACT

Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence  were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.


Subject(s)
Acetone , Extracellular Signal-Regulated MAP Kinases , Pruritus , Receptors, Histamine H4 , Spinal Cord , Animals , Pruritus/chemically induced , Pruritus/metabolism , Receptors, Histamine H4/metabolism , Mice , Spinal Cord/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Acetone/pharmacology , Water , Ether , Disease Models, Animal , Phosphorylation , Indoles/pharmacology , Butadienes/pharmacology , Piperazines/pharmacology , Nitriles/pharmacology , Skin/metabolism , Chronic Disease , Methylhistamines , Proto-Oncogene Proteins c-fos/metabolism , Mice, Inbred C57BL
5.
Article in English | MEDLINE | ID: mdl-38916485

ABSTRACT

BACKGROUND: The therapeutic impact of the Wenyang Huoxue (WYXH) formula on coronary atherosclerotic heart disease (CHD) is well established, yet the precise mechanisms are currently not fully understood. This study provides preliminary insights into the potential mechanisms underlying the therapeutic effects of the formula on CHD by utilizing network pharmacology and molecular docking technology. MATERIALS AND METHODS: The primary active constituents and their corresponding action targets for the formula were retrieved from the TCMSP database. Utilizing Cytoscape 3.9.1 software, a network linking the components of the formula to their respective targets was constructed. Information was collected from Genecards, OMIM, TTD, and DrugBank databases to identify targets related to CHD. The common targets shared by the formula and CHD were then imported into the STRING database to create a protein-protein interaction (PPI) network. Following this, enrichment analyses were performed on the shared targets using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, molecular docking was conducted on the primary active compounds and the core targets. RESULTS: The network encompassing the components and targets of the formula comprises a total of 311 nodes and 895 edges. Compounds exhibiting higher degree centrality consist of quercetin, ß-sitosterol, and kaempferol. In the PPI network, proteins with elevated degree centrality are protein kinase B (AKT1), epidermal growth factor receptor (EGFR), and mitogen-activated protein kinase 3 (MAPK3). The results of GO and KEGG enrichment analyses reveal that the biological processes associated with the efficacy of the formula in treating CHD primarily involve positive regulation of gene expression, hypoxia response, and lipopolysaccharide response, among others. The signaling pathways primarily involved include phosphatidylinositol 3-kinase and protein kinase B (PI3K-AKT), MAPK3, tumor necrosis factor (TNF), and so on. Molecular docking results demonstrate a strong affinity between quercetin, ß-sitosterol, and kaempferol with AKT1, EGFR, and MAPK3. CONCLUSION: We showed for the first time that AKT1, EGFR, and MAPK3 are potential targets influenced by the WYHX formula in CHD treatment. The therapeutic effects could possibly involve signaling pathways such as the PI3K-AKT, MAPK, TNF, and AGE-RAGE pathways.

6.
Phys Rev Lett ; 132(23): 236502, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38905653

ABSTRACT

Integer and fractional Chern insulators have been extensively explored in correlated flat band models. Recently, the prediction and experimental observation of fractional quantum anomalous Hall (FQAH) states with spontaneous time-reversal symmetry breaking have garnered attention. While the thermodynamics of integer quantum anomalous Hall (IQAH) states have been systematically studied, our theoretical knowledge on thermodynamic properties of FQAH states has been severely limited. Here, we delve into the general thermodynamic response and collective excitations of both IQAH and FQAH states within the paradigmatic flat Chern-band model with remote band considered. Our key findings include (i) in both ν=1 IQAH and ν=1/3 FQAH states, even without spin fluctuations, the charge-neutral collective excitations would lower the onset temperature of these topological states, to a value significantly smaller than the charge gap, due to band mixing and multiparticle scattering; (ii) by employing large-scale thermodynamic simulations in FQAH states in the presence of strong interband mixing between C=±1 bands, we find that the lowest collective excitations manifest as the zero-momentum excitons in the IQAH state, whereas in the FQAH state, they take the form of magnetorotons with finite momentum; (iii) the unique charge oscillations in FQAH states are exhibited with distinct experimental signatures, which we propose to detect in future experiments.

7.
Chem Commun (Camb) ; 60(50): 6451-6454, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38832811

ABSTRACT

We theoretically investigated the host-guest chemistry between belt-like cycloparaphenylenes (CPPs) and entrapped bowl-shaped sumanene and corannulene. Density functional theory calculations show that the buckybowls can be stabilized in a CPP host with an appropriately sized cavity (e.g., [10]CPP) through multi-site CH-π interactions. Arising from the confined intermolecular interactions within the cavity, the restrictive buckybowls display novel reactivity distinct from that in their free state.

8.
Acta Pharmacol Sin ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890526

ABSTRACT

Cardiomyocytes are terminal differentiated cells and have limited ability to proliferate or regenerate. Condition like myocardial infarction causes massive death of cardiomyocytes and is the leading cause of death. Previous studies have demonstrated that cardiac fibroblasts can be induced to transdifferentiate into cardiomyocytes in vitro and in vivo by forced expression of cardiac transcription factors and microRNAs. Our previous study have demonstrated that full chemical cocktails could also induce fibroblast to cardiomyocyte transdifferentiation both in vitro and in vivo. With the development of tissue clearing techniques, it is possible to visualize the reprogramming at the whole-organ level. In this study, we investigated the effect of the chemical cocktail CRFVPTM in inducing in situ fibroblast to cardiomyocyte transdifferentiation with two strains of genetic tracing mice, and the reprogramming was observed at whole-heart level with CUBIC tissue clearing technique and 3D imaging. In addition, single-cell RNA sequencing (scRNA-seq) confirmed the generation of cardiomyocytes from cardiac fibroblasts which carries the tracing marker. Our study confirms the use of small molecule cocktails in inducing in situ fibroblast to cardiomyocyte reprogramming at the whole-heart level and proof-of-conceptly providing a new source of naturally incorporated cardiomyocytes to help heart regeneration.

9.
Huan Jing Ke Xue ; 45(6): 3260-3269, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897749

ABSTRACT

It is important to study the impact of land use change on terrestrial ecosystem carbon stocks in urban agglomerations for the optimization of land use structure and sustainable development in urban agglomerations. Based on the patch-generating land use simulation (PLUS) model and integrated valuation of ecosystem services and trade-offs (InVEST) model, a simulation was developed that predicted the land use change and carbon stock of the Guanzhong Plain urban agglomeration in 2040 under different scenarios and further analyzed the impact of land use change on carbon stock. The results showed that:① The land use types of the Guanzhong Plain urban agglomeration were mainly cultivated land, forest land, and grassland, which accounted for more than 90 % of the total study area. ② From 2000 to 2020, the carbon stock in the Guanzhong Plain showed a continuous downward trend, with cropland, woodland, and grassland being the main sources of carbon stock in the Guanzhong Plain, and the overall carbon stock declined by 15.12×106 t, with the spatial distribution presenting the distribution characteristics of "high in the north and south and low in the middle." ③ By 2040, the carbon stock would decrease the most under the urban development scenario, with a total reduction of 27.08×106 t, and the least under the ecological development scenario, with a total reduction of 4.14×106t. The research results can provide data support for the high-quality development and rational land use planning of the Guanzhong Plain urban agglomeration.

10.
JACS Au ; 4(6): 2393-2402, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38938789

ABSTRACT

Metal halide perovskites have outperformed conventional inorganic semiconductors in direct X-ray detection due to their ease of synthesis and intriguing photoelectric properties. However, the operational instability caused by severe ion migration under a high external electric field is still a big concern for the practical application of perovskite detectors. Here, we report a 2D (BPEA)2PbI4 (BPEA = R-1-(4-bromophenyl)ethylammonium) perovskite with Br-substituted aromatic spacer capable of introducing abundant interactions, e.g., the molecular electrostatic forces between Br atoms and aromatic rings and halogen bonds of Br-I, in the interlayer space, which effectively suppresses ion migration and thus enables superior operational stability. Constructing direct X-ray detectors based on high-quality single crystals of (BPEA)2PbI4 results in a high sensitivity of 1,003 µC Gy-1 cm-2, a low detection limit of 366 nGy s-1, and an ultralow baseline drift of 3.48 × 10-8 nA cm-1 s-1 V-1 at 80 V bias. More strikingly, it also exhibits exceptional operational stability under high flux, long-time X-ray irradiation, and large working voltage. This work shows an integration of multiple interlayer interactions to stabilize perovskite X-ray detectors, providing new insights into the future design of perovskite optoelectronic devices toward practical application.

11.
Front Oncol ; 14: 1399047, 2024.
Article in English | MEDLINE | ID: mdl-38915366

ABSTRACT

Background: The prognostic value of an effective biomarker, pan-immune-inflammation value (PIV), for head and neck squamous cell carcinoma (HNSCC) patients after radical surgery or chemoradiotherapy has not been well explored. This study aimed to construct and validate nomograms based on PIV to predict survival outcomes of HNSCC patients. Methods: A total of 161 HNSCC patients who underwent radical surgery were enrolled retrospectively for development cohort. The cutoff of PIV was determined using the maximally selected rank statistics method. Multivariable Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to develop two nomograms (Model A and Model B) that predict disease-free survival (DFS). The concordance index, receiver operating characteristic curves, calibration curves, and decision curve analysis were used to evaluate the nomograms. A cohort composed of 50 patients who received radiotherapy or chemoradiotherapy (RT/CRT) alone was applied for generality testing of PIV and nomograms. Results: Patients with higher PIV (≥123.3) experienced a worse DFS (HR, 5.01; 95% CI, 3.25-7.72; p<0.0001) and overall survival (OS) (HR, 5.23; 95% CI, 3.34-8.18; p<0.0001) compared to patients with lower PIV (<123.3) in the development cohort. Predictors of Model A included age, TNM stage, neutrophil-to-lymphocyte ratio (NLR), and PIV, and that of Model B included TNM stage, lymphocyte-to-monocyte ratio (LMR), and PIV. In comparison with TNM stage alone, the two nomograms demonstrated good calibration and discrimination and showed satisfactory clinical utility in internal validation. The generality testing results showed that higher PIV was also associated with worse survival outcomes in the RT/CRT cohort and the possibility that the two nomograms may have a universal applicability for patients with different treatments. Conclusions: The nomograms based on PIV, a simple but useful indicator, can provide prognosis prediction of individual HNSCC patients after radical surgery and may be broadly applicated for patients after RT/CRT alone.

12.
Am J Biol Anthropol ; 184(3): e24945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708925

ABSTRACT

The linguistic, historical, and subsistent uniqueness of Hmong-Mien (HM) speakers offers a wonderful opportunity to investigate how these factors impact the genetic structure. The genetic differentiation among HM speakers and their population history are not well characterized. Here, we generate genome-wide data from 65 Yao ethnicity samples and analyze them with published data, particularly by leveraging haplotype-based methods. We determined that the fine-scale genetic substructure of HM speakers corresponds better with linguistic classification than with geography. Particularly, parallels between serial founder events and language differentiations can be observed in West Hmongic speakers. Multiple lines of evidence indicate that ~500-year-old GaoHuaHua individuals are most closely related to West Hmongic-speaking Bunu. The strong genetic bottleneck of some HM-speaking groups, especially Bunu, could potentially be associated with their long-term practice of swidden agriculture to some degree. The inferred admixture dates for most of the HM speakers overlap with the reign of the Ming dynasty (1368-1644 CE). Besides a common genetic origin for HM speakers, their genetic ancestry is shared primarily with neighboring Han Chinese and Tai-Kadai speakers in south China. In conclusion, our analyses reveal that recent isolation and admixture events have contributed to the genetic population history of present-day HM speakers.


Subject(s)
Language , Humans , China/ethnology , Haplotypes , Asian People/genetics , Ethnicity/genetics , Ethnicity/history , Genetics, Population
13.
Am J Chin Med ; 52(3): 799-819, 2024.
Article in English | MEDLINE | ID: mdl-38752843

ABSTRACT

Subarachnoid hemorrhage (SAH), a specific subtype of cerebrovascular accident, is characterized by the extravasation of blood into the interstice between the brain and its enveloping delicate tissues. This pathophysiological phenomenon can precipitate an early brain injury (EBI), which is characterized by inflammation and neuronal death. Rutaecarpine (Rut), a flavonoid compound discovered in various plants, has been shown to have protective effects against SAH-induced cerebral insult in rodent models. In our study, we used a rodent SAH model to evaluate the effect of Rut on EBI and investigated the effect of Rut on the inflammatory response and its regulation of SIRT6 expression in vitro. We found that Rut exerts a protective effect on EBI in SAH rats, which is partly due to its ability to inhibit the inflammatory response. Notably, Rut up-regulated Sirtuin 6 (SIRT6) expression, leading to an increase in H3K9 deacetylation and inhibition of nuclear factor-kappa B (NF-[Formula: see text]B) transcriptional activation, thereby mediating the inflammatory response. In addition, further data showed that SIRT6 was proven to mediate the regulation of Rut on the microglial inflammatory response. These findings highlight the importance of SIRT6 in the regulation of inflammation and suggest a potential mechanism for the protective effect of Rut on EBI. In summary, Rut may have the potential to prevent and treat SAH-induced brain injury by interacting with SIRT6. Our findings may provide a new therapeutic strategy for the treatment of SAH-induced EBI.


Subject(s)
Indole Alkaloids , NF-kappa B , Quinazolines , Rats, Sprague-Dawley , Sirtuins , Subarachnoid Hemorrhage , Animals , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/complications , Sirtuins/metabolism , Sirtuins/genetics , Indole Alkaloids/pharmacology , NF-kappa B/metabolism , Male , Quinazolines/pharmacology , Quinazolines/therapeutic use , Disease Models, Animal , Brain Injuries/etiology , Brain Injuries/drug therapy , Brain Injuries/metabolism , Rats , Inflammation/drug therapy , Inflammation/etiology , Phytotherapy , Signal Transduction/drug effects , Gene Expression/drug effects , Quinazolinones
14.
Chem Commun (Camb) ; 60(46): 5916-5919, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38745555

ABSTRACT

We report Fe porphyrins bearing different meso-substituents for the electrocatalytic CO2 reduction reaction (CO2RR). By replacing two and four meso-phenyl groups of Fe tetraphenylporphyrin (FeTPP) with strong electron-withdrawing pentafluorophenyl groups, we synthesized FeF10TPP and FeF20TPP, respectively. We showed that FeTPP and FeF10TPP are active and selective for CO2-to-CO conversion in dimethylformamide with the former being more active, but FeF20TPP catalyzes hydrogen evolution rather than the CO2RR under the same conditions. Experimental and theoretical studies revealed that with more electron-withdrawing meso-substituents, the Fe center becomes electron-deficient and it becomes difficult for it to bind a CO2 molecule in its formal Fe0 state. This work is significant to illustrate the electronic effects of catalysts on binding and activating CO2 molecules and provide fundamental knowledge for the design of new CO2RR catalysts.

15.
RSC Adv ; 14(21): 15167-15177, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38741618

ABSTRACT

Significant advancements have been made in catalytic asymmetric α-C-H bond functionalization of ethers via carbenoid insertion over the past decade. Effective asymmetric catalytic systems, featuring a range of chiral metal catalysts, have been established for the enantioselective synthesis of diverse ether substrates. This has led to the generation of various enantioenriched, highly functionalized oxygen-containing structural motifs, facilitating their application in the asymmetric synthesis of bioactive natural products.

16.
J Hypertens ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38780189

ABSTRACT

BACKGROUND: Unhealthy sleep patterns are common during pregnancy and have been associated with an increased risk of developing hypertensive disorders of pregnancy (HDPs) in observational studies. However, the causality underlying these associations remains uncertain. This study aimed to evaluate the potential causal association between seven sleep traits and the risk of HDPs using a two-sample Mendelian randomization study. METHODS: Genome-wide association study (GWAS) summary statistics were obtained from the FinnGen consortium, UK Biobank, and other prominent consortia, with a focus on individuals of European ancestry. The primary analysis utilized an inverse-variance-weighted MR approach supplemented by sensitivity analyses to mitigate potential biases introduced by pleiotropy. Furthermore, a two-step MR framework was employed for mediation analyses. RESULTS: The data analyzed included 200 000-500 000 individuals for each sleep trait, along with approximately 15 000 cases of HDPs. Genetically predicted excessive daytime sleepiness (EDS) exhibited a significant association with an increased risk of HDPs [odds ratio (OR) 2.96, 95% confidence interval (95% CI) 1.40-6.26], and the specific subtype of preeclampsia/eclampsia (OR 2.97, 95% CI 1.06-8.3). Similarly, genetically predicted obstructive sleep apnea (OSA) was associated with a higher risk of HDPs (OR 1.27, 95% CI 1.09-1.47). Sensitivity analysis validated the robustness of these associations. Mediation analysis showed that BMI mediated approximately 25% of the association between EDS and HDPs, while mediating up to approximately 60% of the association between OSA and the outcomes. No statistically significant associations were observed between other genetically predicted sleep traits, such as chronotype, daytime napping, sleep duration, insomnia, snoring, and the risk of HDPs. CONCLUSION: Our findings suggest a causal association between two sleep disorders, EDS and OSA, and the risk of HDPs, with BMI acting as a crucial mediator. EDS and OSA demonstrate promise as potentially preventable risk factors for HDPs, and targeting BMI may represent an alternative treatment strategy to mitigate the adverse impact of sleep disorders.

17.
Cell Biosci ; 14(1): 66, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783336

ABSTRACT

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

18.
J Colloid Interface Sci ; 669: 383-392, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718591

ABSTRACT

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

20.
Clin Exp Med ; 24(1): 112, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795162

ABSTRACT

Liver metastasis stands as the primary contributor to mortality among patients diagnosed with colorectal cancer (CRC). Neutrophil extracellular traps (NETs) emerge as pivotal players in the progression and metastasis of cancer, showcasing promise as prognostic biomarkers. Our objective is to formulate a predictive model grounded in genes associated with neutrophil extracellular traps and identify novel therapeutic targets for combating CRLM. We sourced gene expression profiles from the Gene Expression Omnibus (GEO) database. Neutrophil extracellular trap-related gene set was obtained from relevant literature and cross-referenced with the GEO datasets. Differentially expressed genes (DEGs) were identified through screening via the least absolute shrinkage and selection operator regression and random forest modeling, leading to the establishment of a nomogram and subtype analysis. Subsequently, a thorough analysis of the characteristic gene CYP4F3 was undertaken, and our findings were corroborated through immunohistochemical staining. We identified seven DEGs (ATG7, CTSG, CYP4F3, F3, IL1B, PDE4B, and TNF) and established nomograms for the occurrence and prognosis of CRLM. CYP4F3 is highly expressed in CRC and colorectal liver metastasis (CRLM), exhibiting a negative correlation with CRLM prognosis. It may serve as a potential therapeutic target for CRLM. A novel prognostic signature related to NETs has been developed, with CYP4F3 identified as a risk factor and potential target for CRLM.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Cytochrome P450 Family 4 , Extracellular Traps , Liver Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Prognosis , Extracellular Traps/metabolism , Biomarkers, Tumor/genetics , Nomograms , Gene Expression Profiling , Male , Female , Gene Expression Regulation, Neoplastic , Neutrophils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...