Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Science ; 365(6453): 570-574, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31395778

ABSTRACT

Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging because such states are extremely fragile. Using a programmable quantum simulator based on neutral atom arrays with interactions mediated by Rydberg states, we demonstrate the creation of "Schrödinger cat" states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 20 qubits. Our approach is based on engineering the energy spectrum and using optimal control of the many-body system. We further demonstrate entanglement manipulation by using GHZ states to distribute entanglement to distant sites in the array, establishing important ingredients for quantum information processing and quantum metrology.

2.
Science ; 362(6415): 662-665, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30237247

ABSTRACT

Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically mediated interactions. Such controlled interactions will be crucial in developing cavity-mediated quantum gates between spin qubits and for realizing scalable quantum network nodes.

3.
Science ; 347(6226): 1129-32, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25636797

ABSTRACT

Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems.

4.
Phys Rev Lett ; 113(11): 113602, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25259977

ABSTRACT

We demonstrate that silicon-vacancy (SiV) centers in diamond can be used to efficiently generate coherent optical photons with excellent spectral properties. We show that these features are due to the inversion symmetry associated with SiV centers. The generation of indistinguishable single photons from separated emitters at 5 K is demonstrated in a Hong-Ou-Mandel interference experiment. Prospects for realizing efficient quantum network nodes using SiV centers are discussed.

5.
Nano Lett ; 14(4): 1982-6, 2014.
Article in English | MEDLINE | ID: mdl-24588353

ABSTRACT

We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.

6.
Nano Lett ; 13(12): 5791-6, 2013.
Article in English | MEDLINE | ID: mdl-24156318

ABSTRACT

The realization of efficient optical interfaces for solid-state atom-like systems is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate a technique for coupling single nitrogen vacancy (NV) centers to suspended diamond photonic crystal cavities with quality factors up to 6000. Specifically, we present an enhancement of the NV center's zero-phonon line fluorescence by a factor of ~ 7 in low-temperature measurements.


Subject(s)
Nanotechnology , Optics and Photonics , Quantum Theory , Crystallization , Fluorescence , Nitrogen/chemistry
7.
Science ; 340(6137): 1202-5, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23618764

ABSTRACT

Hybrid quantum devices, in which dissimilar quantum systems are combined in order to attain qualities not available with either system alone, may enable far-reaching control in quantum measurement, sensing, and information processing. A paradigmatic example is trapped ultracold atoms, which offer excellent quantum coherent properties, coupled to nanoscale solid-state systems, which allow for strong interactions. We demonstrate a deterministic interface between a single trapped rubidium atom and a nanoscale photonic crystal cavity. Precise control over the atom's position allows us to probe the cavity near-field with a resolution below the diffraction limit and to observe large atom-photon coupling. This approach may enable the realization of integrated, strongly coupled quantum nano-optical circuits.

8.
Phys Rev Lett ; 110(13): 133001, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581312

ABSTRACT

We investigate quantum control of a single atom in a tightly focused optical tweezer trap. We show that inevitable spatially varying polarization gives rise to significant internal-state decoherence but that this effect can be mitigated by an appropriately chosen magnetic bias field. This enables Raman sideband cooling of a single atom close to its three-dimensional ground state (vibrational quantum numbers n(x)=n(y)=0.01, n(z)=8) even for a trap beam waist as small as w=900 nm. The small atomic wave packet with δx=δy=24 nm and δz=270 nm represents a promising starting point for future hybrid quantum systems where atoms are placed in close proximity to surfaces.

9.
Phys Rev Lett ; 108(14): 143601, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22540792

ABSTRACT

We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g((2))(0)=0.35±0.04<0.5. In addition, optical transition frequencies of two separated nitrogen-vacancy centers are tuned into resonance with each other by applying external electric fields. An extension of the present approach to generate entanglement of remote solid-state qubits is discussed.

10.
Nature ; 466(7307): 730-4, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20686569

ABSTRACT

Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.

11.
Phys Rev Lett ; 103(12): 123004, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19792431

ABSTRACT

We propose and analyze a scheme to interface individual neutral atoms with nanoscale solid-state systems. The interface is enabled by optically trapping the atom via the strong near-field generated by a sharp metallic nanotip. We show that under realistic conditions, a neutral atom can be trapped with position uncertainties of just a few nanometers, and within tens of nanometers of other surfaces. Simultaneously, the guided surface plasmon modes of the nanotip allow the atom to be optically manipulated, or for fluorescence photons to be collected, with very high efficiency. Finally, we analyze the surface forces, heating and decoherence rates acting on the trapped atom.

12.
Science ; 326(5950): 267-72, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19745117

ABSTRACT

Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

13.
Phys Rev Lett ; 102(20): 203902, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19519028

ABSTRACT

We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.

14.
Nature ; 455(7213): 644-7, 2008 Oct 02.
Article in English | MEDLINE | ID: mdl-18833275

ABSTRACT

Detection of weak magnetic fields with nanoscale spatial resolution is an outstanding problem in the biological and physical sciences. For example, at a distance of 10 nm, the spin of a single electron produces a magnetic field of about 1 muT, and the corresponding field from a single proton is a few nanoteslas. A sensor able to detect such magnetic fields with nanometre spatial resolution would enable powerful applications, ranging from the detection of magnetic resonance signals from individual electron or nuclear spins in complex biological molecules to readout of classical or quantum bits of information encoded in an electron or nuclear spin memory. Here we experimentally demonstrate an approach to such nanoscale magnetic sensing, using coherent manipulation of an individual electronic spin qubit associated with a nitrogen-vacancy impurity in diamond at room temperature. Using an ultra-pure diamond sample, we achieve detection of 3 nT magnetic fields at kilohertz frequencies after 100 s of averaging. In addition, we demonstrate a sensitivity of 0.5 muT Hz(-1/2) for a diamond nanocrystal with a diameter of 30 nm.

15.
Nature ; 450(7168): 402-6, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-18004381

ABSTRACT

Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta, as well as for potential applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of quantum bits. Recently, substantial advances have been made towards these goals, based on modifying photon fields around an emitter using high-finesse optical cavities. Here we demonstrate a cavity-free, broadband approach for engineering photon-emitter interactions via subwavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire's ends to light up. Non-classical photon correlations between the emission from the quantum dot and the ends of the nanowire demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.

16.
Science ; 316(5829): 1312-6, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17540898

ABSTRACT

The key challenge in experimental quantum information science is to identify isolated quantum mechanical systems with long coherence times that can be manipulated and coupled together in a scalable fashion. We describe the coherent manipulation of an individual electron spin and nearby individual nuclear spins to create a controllable quantum register. Using optical and microwave radiation to control an electron spin associated with the nitrogen vacancy (NV) color center in diamond, we demonstrated robust initialization of electron and nuclear spin quantum bits (qubits) and transfer of arbitrary quantum states between them at room temperature. Moreover, nuclear spin qubits could be well isolated from the electron spin, even during optical polarization and measurement of the electronic state. Finally, coherent interactions between individual nuclear spin qubits were observed and their excellent coherence properties were demonstrated. These registers can be used as a basis for scalable, optically coupled quantum information systems.

17.
Science ; 314(5797): 281-5, 2006 Oct 13.
Article in English | MEDLINE | ID: mdl-16973839

ABSTRACT

Understanding and controlling the complex environment of solid-state quantum bits is a central challenge in spintronics and quantum information science. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond was used to gain insight into its local environment. We show that this environment is effectively separated into a set of individual proximal 13C nuclear spins, which are coupled coherently to the electron spin, and the remainder of the 13C nuclear spins, which cause the loss of coherence. The proximal nuclear spins can be addressed and coupled individually because of quantum back-action from the electron, which modifies their energy levels and magnetic moments, effectively distinguishing them from the rest of the nuclei. These results open the door to coherent manipulation of individual isolated nuclear spins in a solid-state environment even at room temperature.

18.
Opt Lett ; 31(13): 2060-2, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16770432

ABSTRACT

We propose a simple and effective way of creating pure dark superposition states. The generation of pure states is carried out by using bichromatic radiation with controllable polarization ellipticity. We experimentally confirm analytic formulas for polarization ellipticity to obtain m-m pure dark states in the system of Zeeman sublevels of alkali atoms. For 87Rb we experimentally accumulated 60% of the atoms in the 0-0 dark state and 50% into the (+/-1) - (+/-1) dark states.

19.
Nature ; 438(7069): 837-41, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16341010

ABSTRACT

Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses in applications such as efficient nonlinear optics. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a 'source' ensemble of 87Rb atoms at room temperature with another 'target' ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.

20.
Phys Rev Lett ; 94(6): 063902, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15783731

ABSTRACT

We show that the recently demonstrated technique for generating stationary pulses of light [M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature (London) 426, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resulting process may enable coherent interactions between single photon pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...