Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Toxicol ; 98(3): 943-956, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38285066

ABSTRACT

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.


Subject(s)
Angiogenesis Inhibitors , Zebrafish , Animals , Humans , Angiogenesis Inhibitors/toxicity , Angiogenesis Inhibitors/metabolism , Angiogenesis , Methotrexate/toxicity , Rotenone/pharmacology , Embryo, Nonmammalian , Metabolomics
2.
EMBO Mol Med ; 13(5): e14010, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33779077

ABSTRACT

Ovarian cancer has the worst prognosis of all gynecological cancers with high-grade serous ovarian cancer (HGSOC) accounting for the majority of ovarian cancer deaths. Therapy resistance and the selection of effective therapies for patients remains a major challenge. In this issue of EMBO Molecular Medicine, Hoppe et al present RAD51 expression as a biomarker of platinum resistance in high-grade serous ovarian cancer (HGSOC) patients (Hoppe et al, 2021).


Subject(s)
Ovarian Neoplasms , Radar , Carcinoma, Ovarian Epithelial , Female , Humans , Ovarian Neoplasms/drug therapy
3.
Mol Syst Biol ; 13(11): 955, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180611

ABSTRACT

Cancer drug screening in patient-derived cells holds great promise for personalized oncology and drug discovery but lacks standardization. Whether cells are cultured as conventional monolayer or advanced, matrix-dependent organoid cultures influences drug effects and thereby drug selection and clinical success. To precisely compare drug profiles in differently cultured primary cells, we developed DeathPro, an automated microscopy-based assay to resolve drug-induced cell death and proliferation inhibition. Using DeathPro, we screened cells from ovarian cancer patients in monolayer or organoid culture with clinically relevant drugs. Drug-induced growth arrest and efficacy of cytostatic drugs differed between the two culture systems. Interestingly, drug effects in organoids were more diverse and had lower therapeutic potential. Genomic analysis revealed novel links between drug sensitivity and DNA repair deficiency in organoids that were undetectable in monolayers. Thus, our results highlight the dependency of cytostatic drugs and pharmacogenomic associations on culture systems, and guide culture selection for drug tests.


Subject(s)
Antineoplastic Agents/pharmacology , Cystadenocarcinoma, Serous/drug therapy , Drug Screening Assays, Antitumor/standards , Genome , Organoids/drug effects , Ovarian Neoplasms/drug therapy , Pharmacogenetics/methods , Animals , Automation, Laboratory , Biological Assay/standards , Cell Death , Cell Line, Tumor , Cell Proliferation , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , DNA Damage , DNA Repair , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Mice , Mice, Inbred NOD , Organoids/metabolism , Organoids/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Precision Medicine , Primary Cell Culture , Xenograft Model Antitumor Assays
4.
Nat Med ; 22(3): 278-87, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26855150

ABSTRACT

Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Cytochrome P-450 CYP3A/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 1-alpha/metabolism , Keratins, Hair-Specific/metabolism , Keratins, Type II/metabolism , Pancreatic Neoplasms/genetics , Aged , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Dasatinib/therapeutic use , Erlotinib Hydrochloride/therapeutic use , Female , Hepatocyte Nuclear Factor 4/metabolism , Humans , Immunohistochemistry , Male , Mice, Inbred NOD , Middle Aged , Neoplasm Transplantation , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pregnane X Receptor , Prognosis , Protein Kinase Inhibitors/therapeutic use , Receptors, Steroid/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL