Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
ChemMedChem ; : e202400080, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619283

ABSTRACT

The 5-HT2A receptor is a molecular target of high pharmacological importance. Ligands of this protein, particularly atypical antipsychotics, are useful in the treatment of numerous mental disorders, including schizophrenia and major depressive disorder. Structure-based virtual screening using a 5-HT2A receptor complex was performed to identify novel ligands for the 5-HT2A receptor, serving as potential antidepressants. From the Enamine screening library, containing over 4 million compounds, 48 molecules were selected for subsequent experimental validation. These compounds were tested against the 5-HT2A receptor in radioligand binding assays. From the tested batch, six molecules were identified as ligands of the main molecular target and were forwarded to a more detailed in vitro profiling. This included radioligand binding assays at 5-HT1A, 5-HT7, and D2 receptors and functional studies at 5-HT2A receptors. These compounds were confirmed to show a binding affinity for at least one of the targets tested in vitro. The success rate for the inactive template-based screening reached 17 %, while it was 9 % for the active template-based screening. Similarity and fragment analysis indicated the structural novelty of the identified compounds. Pharmacokinetics for these molecules was determined using in silico approaches.

2.
Expert Opin Drug Discov ; 19(1): 73-83, 2024.
Article in English | MEDLINE | ID: mdl-37807912

ABSTRACT

INTRODUCTION: Nowadays, it is widely accepted that water molecules play a key role in binding a ligand to a molecular target. Neglecting water molecules in the process of molecular recognition was the result of several failures of the structure-based drug discovery campaigns. The application of WaterMap, in particular WaterMap-guided molecular docking, enables the reasonably accurate and quick description of the location and energetics of water molecules at the ligand-protein interface. AREAS COVERED: In this review, the authors shortly discuss the importance of water in drug design and discovery and provide a brief overview of the computational approaches used to predict the solvent-related effects for the purposes of presenting WaterMap in the context of other available techniques and tools. A concise description of WaterMap concept is followed by the presentation of WaterMap-assisted virtual screening literature published between 2013 and 2023. EXPERT OPINION: In recent years, WaterMap software has been extensively used to support structure-based drug design, in particular structure-based virtual screening. Indeed, it is a useful tool to rescore docking results considering water molecules in the binding pocket. Although WaterMap allows for the consideration of the dynamic behavior of water molecules in the binding site, for best accuracy, its application in conjunction with other techniques such as molecular mechanics-generalized Born surface area of FEP (Free Energy Perturbation) is recommended.


Subject(s)
Drug Design , Drug Discovery , Humans , Molecular Docking Simulation , Ligands , Drug Discovery/methods , Binding Sites , Water/chemistry
3.
Mol Neurobiol ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38135855

ABSTRACT

With the aging of the population, treatment of conditions emerging in old age, such as neurodegenerative disorders, has become a major medical challenge. Of these, Alzheimer's disease, leading to cognitive dysfunction, is of particular interest. Neuronal loss plays an important role in the pathophysiology of this condition, and over the years, a great effort has been made to determine the role of various factors in this process. Unfortunately, until now, the exact pathomechanism of this condition remains unknown. However, the most popular theories associate AD with abnormalities in the Tau and ß-amyloid (Aß) proteins, which lead to their deposition and result in neuronal death. Neurons, like all cells, die in a variety of ways, among which pyroptosis, apoptosis, and necroptosis are associated with the activation of various caspases. It is worth mentioning that Tau and Aß proteins are considered to be one of the caspase activators, leading to cell death. Moreover, the protease activity of caspases influences both of the previously mentioned proteins, Tau and Aß, converting them into more toxic derivatives. Due to the variety of ways caspases impact the development of AD, drugs targeting caspases could potentially be useful in the treatment of this condition. Therefore, there is a constant need to search for novel caspase inhibitors and evaluate them in preclinical and clinical trials.

4.
J Enzyme Inhib Med Chem ; 38(1): 2209828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37184096

ABSTRACT

Schizophrenia is a chronic mental disorder that is not satisfactorily treated with available antipsychotics. The presented study focuses on the search for new antipsychotics by optimising the compound D2AAK3, a multi-target ligand of G-protein-coupled receptors (GPCRs), in particular D2, 5-HT1A, and 5-HT2A receptors. Such receptor profile may be beneficial for the treatment of schizophrenia. Compounds 1-16 were designed, synthesised, and subjected to further evaluation. Their affinities for the above-mentioned receptors were assessed in radioligand binding assays and efficacy towards them in functional assays. Compounds 1 and 10, selected based on their receptor profile, were subjected to in vivo tests to evaluate their antipsychotic activity, and effect on memory and anxiety processes. Molecular modelling was performed to investigate the interactions of the studied compounds with D2, 5-HT1A, and 5-HT2A receptors on the molecular level. Finally, X-ray study was conducted for compound 1, which revealed its stable conformation in the solid state.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/drug therapy , Piperazine/pharmacology , Dopamine/therapeutic use , Ligands , Indazoles , Serotonin/therapeutic use , Receptors, Serotonin , Antipsychotic Agents/pharmacology , Antipsychotic Agents/chemistry , Receptor, Serotonin, 5-HT1A/therapeutic use
5.
Molecules ; 28(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37241951

ABSTRACT

The dopamine D2 receptor, which belongs to the family of G protein-coupled receptors (GPCR), is an important and well-validated drug target in the field of medicinal chemistry due to its wide distribution, particularly in the central nervous system, and involvement in the pathomechanism of many disorders thereof. Schizophrenia is one of the most frequent diseases associated with disorders in dopaminergic neurotransmission, and in which the D2 receptor is the main target for the drugs used. In this work, we aimed at discovering new selective D2 receptor antagonists with potential antipsychotic activity. Twenty-three compounds were synthesized, based on the scaffold represented by the D2AAK2 compound, which was discovered by our group. This compound is an interesting example of a D2 receptor ligand because of its non-classical binding to this target. Radioligand binding assays and SAR analysis indicated structural modifications of D2AAK2 that are possible to maintain its activity. These findings were further rationalized using molecular modeling. Three active derivatives were identified as D2 receptor antagonists in cAMP signaling assays, and the selected most active compound 17 was subjected to X-ray studies to investigate its stable conformation in the solid state. Finally, effects of 17 assessed in animal models confirmed its antipsychotic activity in vivo.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Schizophrenia/drug therapy , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Antipsychotic Agents/chemistry , Dopamine/therapeutic use , Receptors, Dopamine , Radioligand Assay , Receptors, Dopamine D3/therapeutic use
6.
Eur J Med Chem ; 252: 115285, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37027998

ABSTRACT

Schizophrenia is a mental disorder with a complex pathomechanism involving many neurotransmitter systems. Among the currently used antipsychotics, classical drugs acting as dopamine D2 receptor antagonists, and drugs of a newer generation, the so-called atypical antipsychotics, can be distinguished. The latter are characterized by a multi-target profile of action, affecting, apart from the D2 receptor, also serotonin receptors, in particular 5-HT2A and 5-HT1A. Such profile of action is considered superior in terms of both efficacy in treating symptoms and safety. In the search for new potential antipsychotics of such atypical receptor profile, an attempt was made to optimize the arylpiperazine based virtual hit, D2AAK3, which in previous studies displayed an affinity for D2, 5-HT1A and 5-HT2A receptors, and showed antipsychotic activity in vivo. In this work, we present the design of D2AAK3 derivatives (1-17), their synthesis, and structural and pharmacological evaluation. The obtained compounds show affinities for the receptors of interest and their efficacy as antagonists/agonists towards them was confirmed in functional assays. For the selected compound 11, detailed structural studies were carried out using molecular modeling and X-ray methods. Additionally, ADMET parameters and in vivo antipsychotic activity, as well as influence on memory and anxiety processes were evaluated in mice, which indicated good therapeutic potential and safety profile of the studied compound.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Mice , Antipsychotic Agents/chemistry , Receptor, Serotonin, 5-HT2A , Receptors, Dopamine D2/chemistry , Receptors, Serotonin , Schizophrenia/drug therapy , Serotonin
7.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769269

ABSTRACT

Complex disorders, such as depression, remain a mystery for scientists. Although genetic factors are considered important for the prediction of one's vulnerability, it is hard to estimate the exact risk for a patient to develop depression, based only on one category of vulnerability criteria. Genetic factors also regulate drug metabolism, and when they are identified in a specific combination, may result in increased drug resistance. A proper understanding of the genetic basis of depression assists in the development of novel promising medications and effective disorder management schemes. This review aims to analyze the recent literature focusing on the correlation between specific genes and the occurrence of depression. Moreover, certain aspects targeting a high drug resistance identified among patients suffering from major depressive disorder were highlighted in this manuscript. An expected direction of future drug discovery campaigns was also discussed.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Depression/drug therapy , Depression/genetics , Drug Resistance
8.
Expert Opin Drug Discov ; 17(7): 673-683, 2022 07.
Article in English | MEDLINE | ID: mdl-35549603

ABSTRACT

INTRODUCTION: Current findings on multifactorial diseases with a complex pathomechanism confirm that multi-target drugs are more efficient ways in treating them as opposed to single-target drugs. However, to design multi-target ligands, a number of factors and challenges must be taken into account. AREAS COVERED: In this perspective, we summarize the concept of application of multi-target drugs for the treatment of complex diseases such as neurodegenerative diseases, schizophrenia, diabetes, and cancer. We discuss the aspects of target selection for multifunctional ligands and the application of in silico methods in their design and optimization. Furthermore, we highlight other challenges such as balancing affinities to different targets and drug-likeness of obtained compounds. Finally, we present success stories in the design of multi-target ligands for the treatment of common complex diseases. EXPERT OPINION: Despite numerous challenges resulting from the design of multi-target ligands, these efforts are worth making. Appropriate target selection, activity balancing, and ligand drug-likeness belong to key aspects in the design of ligands acting on multiple targets. It should be emphasized that in silico methods, in particular inverse docking, pharmacophore modeling, machine learning methods and approaches derived from network pharmacology are valuable tools for the design of multi-target drugs.


Subject(s)
Neurodegenerative Diseases , Schizophrenia , Drug Design , Humans , Ligands , Neurodegenerative Diseases/drug therapy , Schizophrenia/drug therapy
9.
ChemMedChem ; 17(15): e202200238, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35610178

ABSTRACT

Schizophrenia is a complex disease which is best treated with multitarget drugs, such as atypical antipsychotics. Previously, using structure-based virtual screening, we found a virtual hit, D2AAK1, with nanomolar affinity for dopamine and serotonin receptors important in schizophrenia pharmacotherapy. As a part of an optimization campaign of D2AAK1, we obtained 17 derivatives that also display a multitarget profile. Selected compounds were tested against off-targets in schizophrenia, i. e., histamine H1 receptor and muscarinic M1 receptor, and these did not display considerable affinity for these receptors. The two most promising compounds were subjected to behavioral studies. These compounds decreased amphetamine-induced hyperactivity in mice which indicates their antipsychotic potential. The compounds did not interfere with the memory consolidation in mice, as determined in the passive avoidance test. The favorable pharmacological profile of these compounds was rationalized using molecular modeling.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Mice , Receptors, Muscarinic , Receptors, Serotonin , Schizophrenia/drug therapy
10.
Int J Mol Sci ; 22(11)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204026

ABSTRACT

This work aimed to construct 3D-QSAR CoMFA and CoMSIA models for a series of 31 FAAH inhibitors, containing the 1,3,4-oxadiazol-2-one moiety. The obtained models were characterized by good statistical parameters: CoMFA Q2 = 0.61, R2 = 0.98; CoMSIA Q2 = 0.64, R2 = 0.93. The CoMFA model field contributions were 54.1% and 45.9% for steric and electrostatic fields, respectively. In the CoMSIA model, electrostatic, steric, hydrogen bond donor, and hydrogen acceptor properties were equal to 34.6%, 23.9%, 23.4%, and 18.0%, respectively. These models were validated by applying the leave-one-out technique, the seven-element test set (CoMFA r2test-set = 0.91; CoMSIA r2test-set = 0.91), a progressive scrambling test, and external validation criteria developed by Golbraikh and Tropsha (CoMFA r20 = 0.98, k = 0.95; CoMSIA r20 = 0.98, k = 0.89). As the statistical significance of the obtained model was confirmed, the results of the CoMFA and CoMSIA field calculation were mapped onto the enzyme binding site. It gave us the opportunity to discuss the structure-activity relationship based on the ligand-enzyme interactions. In particular, examination of the electrostatic properties of the established CoMFA model revealed fields that correspond to the regions where electropositive substituents are not desired, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one moiety. This highlights the importance of heterocycle, a highly electronegative moiety in this area of each ligand. Examination of hydrogen bond donor and acceptor properties contour maps revealed several spots where the implementation of another hydrogen-bond-donating moiety will positively impact molecules' binding affinity, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one ring. On the other hand, there is a large isopleth that refers to the favorable H-bond properties close to the terminal phenoxy group of a ligand, which means that, generally speaking, H-bond acceptors are desired in this area.


Subject(s)
Molecular Docking Simulation , Oxadiazoles/chemistry , Quantitative Structure-Activity Relationship , Hydrogen Bonding , Inhibitory Concentration 50 , Reproducibility of Results
11.
Biomolecules ; 11(6)2021 06 16.
Article in English | MEDLINE | ID: mdl-34208760

ABSTRACT

Parkinson's disease is a progressive neurodegenerative disorder characterized by the death of nerve cells in the substantia nigra of the brain. The treatment options for this disease are very limited as currently the treatment is mainly symptomatic, and the available drugs are not able to completely stop the progression of the disease but only to slow it down. There is still a need to search for new compounds with the most optimal pharmacological profile that would stop the rapidly progressing disease. An increasing understanding of Parkinson's pathogenesis and the discovery of new molecular targets pave the way to develop new therapeutic agents. The use and selection of appropriate cell and animal models that better reflect pathogenic changes in the brain is a key aspect of the research. In addition, computer-assisted drug design methods are a promising approach to developing effective compounds with potential therapeutic effects. In light of the above, in this review, we present current approaches for developing new drugs for Parkinson's disease.


Subject(s)
Drug Development/methods , Drug Development/trends , Parkinson Disease/drug therapy , Animals , Brain/pathology , Humans , Neurons/pathology , Neuroprotective Agents/therapeutic use , Parkinson Disease/pathology , Substantia Nigra/pathology
12.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008436

ABSTRACT

Depression is a multifactorial disorder that affects millions of people worldwide, and none of the currently available therapeutics can completely cure it. Thus, there is a need for developing novel, potent, and safer agents. Recent medicinal chemistry findings on the structure and function of the serotonin 2A (5-HT2A) receptor facilitated design and discovery of novel compounds with antidepressant action. Eligible papers highlighting the importance of 5-HT2A receptors in the pathomechanism of the disorder were identified in the content-screening performed on the popular databases (PubMed, Google Scholar). Articles were critically assessed based on their titles and abstracts. The most accurate papers were chosen to be read and presented in the manuscript. The review summarizes current knowledge on the applicability of 5-HT2A receptor signaling modulators in the treatment of depression. It provides an insight into the structural and physiological features of this receptor. Moreover, it presents an overview of recently conducted virtual screening campaigns aiming to identify novel, potent 5-HT2A receptor ligands and additional data on currently synthesized ligands acting through this protein.


Subject(s)
Antidepressive Agents/chemistry , Depression/metabolism , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Drug Design , Humans , Ligands , Models, Molecular , Protein Conformation , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/therapeutic use , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Structure-Activity Relationship
13.
J Histochem Cytochem ; 68(7): 515-529, 2020 07.
Article in English | MEDLINE | ID: mdl-32602410

ABSTRACT

Immunohistochemistry (IHC) is the accepted standard for spatial analysis of protein expression in tissues. IHC is widely used for cancer diagnostics and in basic research. The development of new antibodies to proteins with unknown expression patterns has created a demand for thorough validation. We have applied resources from the Human Protein Atlas project and the Antibody Portal at National Cancer Institute to generate protein expression data for 12 proteins across 39 cancer cell lines and 37 normal human tissue types. The outcome of IHC on consecutive sections from both cell and tissue microarrays using two independent antibodies for each protein was compared with in situ proximity ligation (isPLA), where binding by both antibodies is required to generate detection signals. Semi-quantitative scores from IHC and isPLA were compared with expression of the corresponding 12 transcripts across all cell lines and tissue types. Our results show a more consistent correlation between mRNA levels and isPLA as compared to IHC. The main benefits of isPLA include increased detection specificity and decreased unspecific staining compared to IHC. We conclude that implementing isPLA as a complement to IHC for analysis of protein expression and in antibody validation pipelines can lead to more accurate localization of proteins in tissue.


Subject(s)
Antibodies/immunology , Immunohistochemistry/methods , Cell Line, Tumor , Gene Expression Regulation , Humans
14.
Int J Mol Sci ; 20(18)2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31540025

ABSTRACT

In order to search for novel antipsychotics acting through the D2 receptor, it is necessary to know the structure-activity relationships for dopamine D2 receptor antagonists. In this context, we constructed the universal three-dimensional quantitative structure-activity relationship (3D- QSAR) model for competitive dopamine D2 receptor antagonists. We took 176 compounds from chemically different groups characterized by the half maximal inhibitory concentration (IC50)from the CHEMBL database and docked them to the X-ray structure of the human D2 receptor in the inactive state. Selected docking poses were applied for Comparative Molecular Field Analysis (CoMFA) alignment. The obtained CoMFA model is characterized by a cross-validated coefficient Q2 of 0.76 with an optimal component of 5, R2 of 0.92, and an F value of 338.9. The steric and electrostatic field contributions are 67.4% and 32.6%, respectively. The statistics obtained prove that the CoMFA model is significant. Next, the IC50 of the 16 compounds from the test set was predicted with R2 of 0.95. Finally, a progressive scrambling test was carried out for additional validation. The CoMFA fields were mapped onto the dopamine D2 receptor binding site, which enabled a discussion of the structure-activity relationship based on ligand-receptor interactions. In particular, it was found that one of the desired steric interactions covers the area of a putative common allosteric pocket suggested for some other G protein-coupled receptors (GPCRs), which would suggest that some of the known dopamine receptor antagonists are bitopic in their essence. The CoMFA model can be applied to predict the potential activity of novel dopamine D2 receptor antagonists.


Subject(s)
Antipsychotic Agents/chemistry , Dopamine D2 Receptor Antagonists/chemistry , Receptors, Dopamine D2/chemistry , Binding Sites/drug effects , Dopamine/chemistry , Dopamine/pharmacology , Drug Compounding , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Binding/drug effects , Protein Structure, Tertiary , Quantitative Structure-Activity Relationship , Software , Static Electricity
15.
Mod Pathol ; 31(2): 253-263, 2018 02.
Article in English | MEDLINE | ID: mdl-28937142

ABSTRACT

Antibodies are important tools in anatomical pathology and research, but the quality of in situ protein detection by immunohistochemistry greatly depends on the choice of antibodies and the abundance of the targeted proteins. Many antibodies used in scientific research do not meet requirements for specificity and sensitivity. Accordingly, methods that improve antibody performance and produce quantitative data can greatly advance both scientific investigations and clinical diagnostics based on protein expression and in situ localization. We demonstrate here protocols for antibody labeling that allow specific protein detection in tissues via bright-field in situ proximity ligation assays, where each protein molecule must be recognized by two antibodies. We further demonstrate that single polyclonal antibodies or purified serum preparations can be used for these dual recognition assays. The requirement for protein recognition by pairs of antibody conjugates can significantly improve specificity of protein detection over single-binder assays.


Subject(s)
Antibodies , Immunohistochemistry/methods , Proteins/analysis , Proteomics/methods , Humans , Sensitivity and Specificity
17.
Sci Rep ; 7(1): 13149, 2017 10 13.
Article in English | MEDLINE | ID: mdl-29030641

ABSTRACT

Lubricin, a heavily O-glycosylated protein, is essential for boundary lubrication of articular cartilage. Strong surface adherence of lubricin is required given the extreme force it must withstand. Disulfide bound complexes of lubricin and cartilage oligomeric matrix protein (COMP) have recently been identified in arthritic synovial fluid suggesting they may be lost from the cartilage surface in osteoarthritis and inflammatory arthritis. This investigation was undertaken to localise COMP-lubricin complexes within cartilage and investigate if other cartilage proteins are involved in anchoring lubricin to the joint. Immunohistochemical analysis of human cartilage biopsies showed lubricin and COMP co-localise to the cartilage surface. COMP knockout mice, however, presented with a lubricin layer on the articular cartilage leading to the further investigation of additional lubricin binding mechanisms. Proximity ligation assays (PLA) on human cartilage biopsies was used to localise additional lubricin binding partners and demonstrated that lubricin bound COMP, but also fibronectin and collagen II on the cartilage surface. Fibronectin and collagen II binding to lubricin was confirmed and characterised by solid phase binding assays with recombinant lubricin fragments. Overall, COMP, fibronectin and collagen II bind lubricin, exposed on the articular cartilage surface suggesting they may be involved in maintaining essential boundary lubrication.


Subject(s)
Cartilage Oligomeric Matrix Protein/metabolism , Cartilage, Articular/metabolism , Collagen/metabolism , Fibronectins/metabolism , Glycoproteins/metabolism , Aged , Animals , Humans , Immunohistochemistry , Male , Mice
18.
Nat Commun ; 8: 15840, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28643774

ABSTRACT

The discovery of oestrogen receptor ß (ERß/ESR2) was a landmark discovery. Its reported expression and homology with breast cancer pharmacological target ERα (ESR1) raised hopes for improved endocrine therapies. After 20 years of intense research, this has not materialized. We here perform a rigorous validation of 13 anti-ERß antibodies, using well-characterized controls and a panel of validation methods. We conclude that only one antibody, the rarely used monoclonal PPZ0506, specifically targets ERß in immunohistochemistry. Applying this antibody for protein expression profiling in 44 normal and 21 malignant human tissues, we detect ERß protein in testis, ovary, lymphoid cells, granulosa cell tumours, and a subset of malignant melanoma and thyroid cancers. We do not find evidence of expression in normal or cancerous human breast. This expression pattern aligns well with RNA-seq data, but contradicts a multitude of studies. Our study highlights how inadequately validated antibodies can lead an exciting field astray.


Subject(s)
Antibodies/analysis , Estrogen Receptor beta/analysis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Female , Humans , Immunohistochemistry , Lymphocytes/chemistry , Lymphocytes/metabolism , Male , Ovary/chemistry , Ovary/metabolism , Testis/chemistry , Testis/metabolism
19.
Sci Rep ; 7(1): 1490, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28473697

ABSTRACT

Detection and quantification of proteins and their post-translational modifications are crucial to decipher functions of complex protein networks in cell biology and medicine. Capillary isoelectric focusing together with antibody-based detection can resolve and identify proteins and their isoforms with modest sample input. However, insufficient sensitivity prevents detection of proteins present at low concentrations and antibody cross-reactivity results in unspecific detection that cannot be distinguished from bona fide protein isoforms. By using DNA-conjugated antibodies enhanced signals can be obtained via rolling circle amplification (RCA). Both sensitivity and specificity can be greatly improved in assays dependent on target recognition by pairs of antibodies using in situ proximity ligation assays (PLA). Here we applied these DNA-assisted RCA techniques in capillary isoelectric focusing to resolve endogenous signaling transducers and isoforms along vascular endothelial growth factor (VEGF) signaling pathways at concentrations too low to be detected in standard assays. We also demonstrate background rejection and enhanced specificity when protein detection depended on binding by pairs of antibodies using in situ PLA, compared to assays where each antibody preparation was used on its own.


Subject(s)
Electrophoresis, Capillary/methods , Isoelectric Focusing/methods , Nucleic Acid Amplification Techniques/methods , Proteins/analysis , Colorectal Neoplasms/diagnosis , Extracellular Signal-Regulated MAP Kinases/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Nanoparticles/chemistry , Phosphorylation , Sensitivity and Specificity , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/pharmacology
20.
Mol Cell Proteomics ; 15(6): 1848-56, 2016 06.
Article in English | MEDLINE | ID: mdl-26929218

ABSTRACT

The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-ß signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-ß signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-ß signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors of the insulin receptor, which decreased levels of p179SMAD3/SMAD4 complexes, thereby demonstrating the suitability of the recombinant affinity reagents applied in isPLA in screening for inhibitors of cell signaling.


Subject(s)
Single-Chain Antibodies/analysis , Smad Proteins/metabolism , Transforming Growth Factor beta/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Peptide Library , Phosphorylation , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...