Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Ann Neurol ; 95(6): 1112-1126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551149

ABSTRACT

OBJECTIVE: Specific human leucocyte antigen (HLA) alleles are not only associated with higher risk to develop multiple sclerosis (MS) and other autoimmune diseases, but also with the severity of various viral and bacterial infections. Here, we analyzed the most specific biomarker for MS, that is, the polyspecific intrathecal IgG antibody production against measles, rubella, and varicella zoster virus (MRZ reaction), for possible HLA associations in MS. METHODS: We assessed MRZ reaction from 184 Swiss patients with MS and clinically isolated syndrome (CIS) and 89 Swiss non-MS/non-CIS control patients, and performed HLA sequence-based typing, to check for associations of positive MRZ reaction with the most prevalent HLA alleles. We used a cohort of 176 Swedish MS/CIS patients to replicate significant findings. RESULTS: Whereas positive MRZ reaction showed a prevalence of 38.0% in MS/CIS patients, it was highly specific (97.7%) for MS/CIS. We identified HLA-DRB1*15:01 and other tightly linked alleles of the HLA-DR15 haplotype as the strongest HLA-encoded risk factors for a positive MRZ reaction in Swiss MS/CIS (odds ratio [OR], 3.90, 95% confidence interval [CI] 2.05-7.46, padjusted = 0.0004) and replicated these findings in Swedish MS/CIS patients (OR 2.18, 95%-CI 1.16-4.02, padjusted = 0.028). In addition, female MS/CIS patients had a significantly higher probability for a positive MRZ reaction than male patients in both cohorts combined (padjusted <0.005). INTERPRETATION: HLA-DRB1*15:01, the strongest genetic risk factor for MS, and female sex, 1 of the most prominent demographic risk factors for developing MS, predispose in MS/CIS patients for a positive MRZ reaction, the most specific CSF biomarker for MS. ANN NEUROL 2024;95:1112-1126.


Subject(s)
Immunoglobulin G , Multiple Sclerosis , Humans , Female , Male , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/cerebrospinal fluid , Immunoglobulin G/blood , Adult , Middle Aged , Herpesvirus 3, Human/immunology , Herpesvirus 3, Human/genetics , HLA-DRB1 Chains/genetics , Sweden/epidemiology , Cohort Studies , Young Adult , Rubella virus/genetics , Rubella virus/immunology , HLA Antigens/genetics , Antibodies, Viral/cerebrospinal fluid , Antibodies, Viral/blood , Alleles , Switzerland/epidemiology
2.
Front Immunol ; 14: 1237149, 2023.
Article in English | MEDLINE | ID: mdl-37744325

ABSTRACT

Background: Myelin oligodendrocyte glycoprotein antibody-associated autoimmune disease (MOGAD) is a rare monophasic or relapsing inflammatory demyelinating disease of the central nervous system (CNS) and can mimic multiple sclerosis (MS). The variable availability of live cell-based MOG-antibody assays and difficulties in interpreting low-positive antibody titers can complicate diagnosis. Literature on cerebrospinal fluid (CSF) profiles in MOGAD versus MS, one of the most common differential diagnoses, is scarce. We here analyzed the value of basic CSF parameters to i) distinguish different clinical MOGAD manifestations and ii) differentiate MOGAD from MS. Methods: This is retrospective, single-center analysis of clinical and laboratory data of 30 adult MOGAD patients and 189 adult patients with relapsing-remitting multiple sclerosis. Basic CSF parameters included CSF white cell count (WCC) and differentiation, CSF/serum albumin ratio (QAlb), intrathecal production of immunoglobulins, CSF-restricted oligoclonal bands (OCB) and MRZ reaction, defined as intrathecal production of IgG reactive against at least 2 of the 3 viruses measles (M), rubella (R) and varicella zoster virus (Z). Results: MOGAD patients with myelitis were more likely to have a pleocytosis, a QAlb elevation and a higher WCC than those with optic neuritis, and, after review and combined analysis of our and published cases, they also showed a higher frequency of intrathecal IgM synthesis. Compared to MS, MOGAD patients had significantly more frequently neutrophils in CSF and WCC>30/µl, QAlb>10×10-3, as well as higher mean QAlb values, but significantly less frequently CSF plasma cells and CSF-restricted OCB. A positive MRZ reaction was present in 35.4% of MS patients but absent in all MOGAD patients. Despite these associations, the only CSF parameters with relevant positive likelihood ratios (PLR) indicating MOGAD were QAlb>10×10-3 (PLR 12.60) and absence of CSF-restricted OCB (PLR 14.32), whereas the only relevant negative likelihood ratio (NLR) was absence of positive MRZ reaction (NLR 0.00). Conclusion: Basic CSF parameters vary considerably in different clinical phenotypes of MOGAD, but QAlb>10×10-3 and absence of CSF-restricted OCB are highly useful to differentiate MOGAD from MS. A positive MRZ reaction is confirmed as the strongest CSF rule-out parameter in MOGAD and could be useful to complement the recently proposed diagnostic criteria.


Subject(s)
Autoimmune Diseases , Immune System Diseases , Multiple Sclerosis , Adult , Humans , Multiple Sclerosis/diagnosis , Retrospective Studies , Antibodies
3.
Front Neurol ; 14: 1135392, 2023.
Article in English | MEDLINE | ID: mdl-37034091

ABSTRACT

Background: Neurosarcodosis is one of the most frequent differential diagnoses of multiple sclerosis (MS) and requires central nervous system (CNS) biopsy to establish definite diagnosis according to the latest consensus diagnostic criteria. We here analyzed diagnostic values of basic cerebrospinal fluid (CSF) parameters to distinguish neurosarcoidosis from MS without CNS biopsy. Methods: We retrospectively assessed clinical, radiological and laboratory data of 27 patients with neurosarcoidosis treated at our center and compared following CSF parameters with those of 138 patients with relapsing-remitting MS: CSF white cell count (WCC), CSF/serum albumin quotient (Qalb), intrathecal production of immunoglobulins including oligoclonal bands (OCB), MRZ reaction, defined as a polyspecific intrathecal production of IgG reactive against ≥2 of 3 the viruses measles (M), rubella (R), and zoster (Z) virus, and CSF lactate levels. Additional inflammatory biomarkers in serum and/or CSF such as neopterin, soluble interleukin-2 receptor (sIL-2R) and C-reactive protein (CRP) were assessed. Results: There was no significant difference in the frequency of CSF pleocytosis, but a CSF WCC > 30/µl was more frequent in patients with neurosarcoidosis. Compared to MS, patients with neurosarcoidosis showed more frequently an increased Qalb and CSF lactate levels as well as increased serum and CSF levels of sIL-2R, but a lower frequency of intrathecal IgG synthesis and positive MRZ reaction. Positive likelihood ratio (PLR) of single CSF parameters indicating neurosarcoidosis was highest, if (a) CSF WCC was >30/µl (PLR 7.2), (b) Qalb was >10 × 10-3 (PLR 66.4), (c) CSF-specific OCB were absent (PLR 11.5), (d) CSF lactate was elevated (PLR 23.0) or (e) sIL-2R was elevated (PLR>8.0). The combination of (a) one of three following basic CSF parameters, i.e., (a.1.) CSF WCC >30/ul, or (a.2.) QAlb >10 × 10-3, or (a.3.) absence of CSF-specific OCB, and (b) absence of positive MRZ reaction showed the best diagnostic accuracy (sensitivity and specificity each >92%; PLR 12.8 and NLR 0.08). Conclusion: Combined evaluation of basic CSF parameters and MRZ reaction is powerful in differentiating neurosarcoidosis from MS, with moderate to severe pleocytosis and QAlb elevation and absence of intrathecal IgG synthesis as useful rule-in parameters and positive MRZ reaction as a rule-out parameter for neurosarcoidosis.

4.
Front Vet Sci ; 9: 873456, 2022.
Article in English | MEDLINE | ID: mdl-35865875

ABSTRACT

Isoelectric focusing followed by immunoblotting is a method routinely used in human medicine to assess the presence of oligoclonal bands (OCBs) in cerebrospinal fluid (CSF) and serum. The detection of OCBs is a valuable diagnostic test, especially important in patients with the suspicion of multiple sclerosis (MS), in which at least two OCBs are found in the CSF not present in paired serum samples in up to 95% of patients. So far, presence of OCBs in CSF and serum of dogs has only been investigated in a small cohort of dogs diagnosed with degenerative myelopathy and healthy dogs. The main objective of the current study was to describe the method used for OCB detection and compare two different canine anti-IgG antibodies: a canine rabbit-anti-IgG antibody (Jackson ImmunoResearch) vs. a canine goat-anti-IgG antibody (Bio-Rad). The method was performed according to the instructions of the commercial kit used. The canine goat-anti-IgG antibody showed a better performance than the canine rabbit-anti-IgG antibody. The availability of the technique of OCB detection in the dog paves the way for further studies, especially in the field of inflammatory diseases of the canine central nervous system, and comparison between specific human and canine diseases.

5.
Nature ; 608(7921): 45-49, 2022 08.
Article in English | MEDLINE | ID: mdl-35879555

ABSTRACT

The a.c. Josephson effect predicted in 19621 and observed experimentally in 19632 as quantized 'voltage steps' (the Shapiro steps) from photon-assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the a.c. coherent quantum phase slip (CQPS), photon-assisted tunnelling of magnetic fluxes through a superconducting nanowire, is envisaged to reveal itself as quantized 'current steps'3,4. The basic physical significance of the a.c. CQPS is also complemented by practical importance in future current standards, a missing element for closing the quantum metrology triangle5,6. In 2012, the CQPS was demonstrated as superposition of magnetic flux quanta in superconducting nanowires 7. However, the direct flat current steps in superconductors, the only unavailable basic effect of superconductivity to date, was unattainable due to lack of appropriate materials and challenges in circuit engineering. Here we report the direct observation of the dual Shapiro steps in a superconducting nanowire. The sharp steps are clear up to 26 GHz frequency with current values 8.3 nA and limited by the present set-up bandwidth. The current steps were theoretically predicted in small Josephson junctions 30 years ago5. However, unavoidable broadening in Josephson junctions prevents their direct experimental observation8,9. We solve this problem by placing a thin NbN nanowire in an inductive environment.

6.
Nat Commun ; 13(1): 3105, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35661728

ABSTRACT

Historically, the field of plasmonics has been relying on the framework of classical electrodynamics, with the local-response approximation of material response being applied even when dealing with nanoscale metallic structures. However, when the confinement of electromagnetic radiation approaches atomic scales, mesoscopic effects are anticipated to become observable, e.g., those associated with the nonlocal electrodynamic surface response of the electron gas. Here, we investigate nonlocal effects in propagating gap surface plasmon modes in ultrathin metal-dielectric-metal planar waveguides, exploiting monocrystalline gold flakes separated by atomic-layer-deposited aluminum oxide. We use scanning near-field optical microscopy to directly access the near-field of such confined gap plasmon modes and measure their dispersion relation via their complex-valued propagation constants. We compare our experimental findings with the predictions of the generalized nonlocal optical response theory to unveil signatures of nonlocal damping, which becomes appreciable for few-nanometer-sized dielectric gaps.

7.
ACS Appl Mater Interfaces ; 14(14): 16894-16900, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35362322

ABSTRACT

The conversion of solar energy into electric power has been extensively studied, for example, by photovoltaics. However, photo-thermoelectric (P-TE) conversion as an effective solar-to-electricity conversion process is less studied. Here, we present an efficient full-solar-spectrum plasmonic absorber for scalable P-TE conversion based on a simple integration of light absorber and commercial thermoelectric modules. Our developed light absorber of silica-silver hybrid structures achieves an average absorption of 99.4% in the wavelength range from 200 to 2500 nm, which covers over 98% solar energy in this range. It thus appears fully matte black and is named black silver. The light absorber includes a hierarchical structure with Ag nanoparticles attached on three-dimensional SiO2 nanostructures, resulting in ultrahigh absorption. Strong localized surface plasmon resonance hybridization together with multiple scattering causes the perfect light absorption. Using the black silver as a light absorber for P-TE power generation, it can achieve a peak voltage density as high as 82.5 V m-2 under a solar intensity of 100 mW cm-2, which is large enough to power numerous electronic devices. By assembling 20 thermoelectric modules in series, we test their possibility of practical application, and they can also achieve an average voltage density of 70.66 V m-2. Our work opens up a promising technology that facilitates high-efficiency and scalable solar energy conversion via the P-TE effect.

8.
Adv Clin Exp Med ; 30(11): 1115-1125, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34418337

ABSTRACT

BACKGROUND: Early recognition of sepsis and a prompt initiation of goal-directed therapy is important for sepsis survival. Little is known about the impact of early recognition of sepsis in the out-of-hospital setting when paramedics are the 1st medical professionals arriving on the scene. OBJECTIVES: To characterize the impact of sepsis recognition by paramedics in the 1st out-of-hospital contact and to establish a predictive model by combining preclinical patient characteristics. MATERIAL AND METHODS: In this retrospective single-center cohort study, we included a total of 263 patients diagnosed with sepsis after admission to the emergency department and correlated them to the emergency medical protocols of the paramedics who have seen the patient out-of-hospital. RESULTS: Only 25 patients were correctly diagnosed by paramedics out-of-hospital. If sepsis was diagnosed, the median time to antibiotic administration was significantly lower (136.50 min compared to 206.98 min, p = 0.0069) and mortality was reduced from 22.8% to 8% (p = 0.0292). We have identified predictors for prognosis and calculated a predictive model with a modified quick Sepsis-related Organ Failure Assessment (qSOFA) score, which fits the needs for out-of-hospital usage and results in a better discrimination of vitally threatened patients (receiver operating characteristic (ROC) area under curve (AUC) of 0.641 compared to 0.719), as compared to the standard qSOFA. CONCLUSIONS: Sepsis recognition by paramedics at the 1st out-of-hospital contact significantly reduces sepsis mortality. The qSOFA and modified qSOFA are suitable tools for sepsis recognition, and have an impact on mortality and disease management when used.


Subject(s)
Emergency Service, Hospital , Sepsis , Allied Health Personnel , Cohort Studies , Hospital Mortality , Hospitals , Humans , Intensive Care Units , Prognosis , ROC Curve , Retrospective Studies , Sepsis/diagnosis , Sepsis/therapy
10.
Biol Open ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34240122

ABSTRACT

Biomechanical stability plays an important role in fracture healing, with unstable fixation being associated with healing disturbances. A lack of stability is also considered a risk factor for fracture-related infection (FRI), although confirmatory studies and an understanding of the underlying mechanisms are lacking. In the present study, we investigate whether biomechanical (in)stability can lead to altered immune responses in mice under sterile or experimentally inoculated conditions. In non-inoculated C57BL/6 mice, instability resulted in an early increase of inflammatory markers such as granulocyte-colony stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin (IL)-6 within the bone. When inoculated with Staphylococcus epidermidis, instability resulted in a further significant increase in G-CSF, IL-6 and KC in bone tissue. Staphylococcus aureus infection led to rapid osteolysis and instability in all animals and was not further studied. Gene expression measurements also showed significant upregulation in CCL2 and G-CSF in these mice. IL-17A was found to be upregulated in all S. epidermidis infected mice, with higher systemic IL-17A cell responses in mice that cleared the infection, which was found to be produced by CD4+ and γδ+ T cells in the bone marrow. IL-17A knock-out (KO) mice displayed a trend of delayed clearance of infection (P=0.22, Fisher's exact test) and an increase in interferon (IFN)-γ production. Biomechanical instability leads to a more pronounced local inflammatory response, which is exaggerated by bacterial infection. This study provides insights into long-held beliefs that biomechanics are crucial not only for fracture healing, but also for control of infection.


Subject(s)
Fractures, Bone/immunology , Fractures, Bone/physiopathology , Immunity/immunology , Staphylococcal Infections/immunology , Staphylococcus/immunology , Animals , Biomechanical Phenomena , Disease Models, Animal , Fractures, Bone/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Staphylococcal Infections/microbiology
11.
Light Sci Appl ; 10(1): 114, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34059619

ABSTRACT

Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.

12.
Article in English | MEDLINE | ID: mdl-33649179

ABSTRACT

OBJECTIVE: CNS damage can increase the susceptibility of the blood-brain barrier (BBB) to changes induced by systemic inflammation. The aim of this study is to better understand BBB permeability in patients with MS and to examine whether compromised BBB integrity in some of these patients is associated with CNS damage and systemic inflammation. METHODS: Routine CSF measurements of 121 patients with MS were analyzed including number and type of infiltrating cells, total protein, lactate, and oligoclonal bands, as well as intrathecal production of immunoglobulins and CSF/serum quotients for albumin, immunoglobulins, and glucose. In addition, in a subcohort of these patients, we performed ex vivo immunophenotyping of CSF-infiltrating and paired circulating lymphocytes using a panel of 13 monoclonal antibodies, we quantified intrathecal neurofilament light chain (NF-L) and chitinase 3-like 1 (CHI3L1), and we performed intrathecal lipidomic analysis. RESULTS: Patients with MS with abnormal high levels of albumin in the CSF showed a distinct CSF cell infiltrate and markers of CNS damage such as increased intrathecal levels of NF-L and CHI3L1 as well as a distinct CSF lipidomic profile. In addition, these patients showed higher numbers of circulating proinflammatory Th1 and Th1* cells compatible with systemic inflammation. Of interest, the abnormally high levels of albumin in the CSF of those patients were preserved over time. CONCLUSIONS: Our results support the hypothesis that CNS damage may increase BBB vulnerability to systemic inflammation in a subset of patients and thus contribute to disease heterogeneity.


Subject(s)
Albumins/cerebrospinal fluid , Brain Injuries/cerebrospinal fluid , Inflammation/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Adult , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/metabolism , Brain Injuries/immunology , Female , Humans , Immunoglobulin G/cerebrospinal fluid , Male , Middle Aged , Multiple Sclerosis/immunology
13.
ACS Nano ; 14(11): 15023-15031, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33022175

ABSTRACT

Black body materials are promising candidates to meet future energy demands, as they are able to harvest energy from the total bandwidth of solar radiation. Here, we report on high-absorption near-blackbody-like structures (>98% for a wide solar spectrum range from 220 to 2500 nm) consisting of a silica scaffold and Ag nanoparticles with a layer thickness below 10 µm, fabricated using metastable atomic layer deposition (MS-ALD). Several effects contribute collectively and in a synergistic manner to the ultrahigh absorption, including the pronounced heterogeneity of the nanoparticles in size and shape, particle plasmon hybridization, and the trapping of omnidirectionally scattered light in the 3D hierarchical hybrid structures. We propose that, in the future, MS-ALD needs to be considered as a simple and promising method to fabricate blackbody materials with excellent broadband absorption.

14.
J Biomed Mater Res B Appl Biomater ; 107(4): 1095-1106, 2019 05.
Article in English | MEDLINE | ID: mdl-30332531

ABSTRACT

The development of an infection is a major complication for some patients with implanted biomaterials. Whether the material or surface composition of the used biomaterial influences infection has not been directly compared for key biomaterials currently in use in human patients. We conducted a thorough in vitro and in vivo investigation using titanium (Ti) and polyether-ether-ketone (PEEK) as both commercially available and as modified equivalents (surface polished Ti, and oxygen plasma treated PEEK). Complement activation and cytokine secretion of cell of the immune system was assessed in vitro for all materials in the absence and presence of bacterial stimulants. In a follow-up in vivo study, we monitored bacterial infection associated with clinically available and standard Ti and PEEK inoculated with Staphylococcus aureus. Complement activation was affected by material choice in the absence of bacterial stimulation, although the material based differences were largely lost upon bacterial stimulation. In the in vivo study, the bacterial burden, histological response and cytokine secretion suggests that there is no significant difference between both PEEK and Ti. In conclusion, the underlying material has a certain impact in the absence of bacterial stimulation, however, in the presence of bacterial stimulation, bacteria seem to dictate the responses in a manner that overshadows the influence of material surface properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1095-1106, 2019.


Subject(s)
Bone Diseases, Infectious , Implants, Experimental/microbiology , Ketones/chemistry , Materials Testing , Polyethylene Glycols/chemistry , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Animals , Benzophenones , Bone Diseases, Infectious/immunology , Bone Diseases, Infectious/microbiology , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Osseointegration , Polymers , Staphylococcal Infections/pathology
15.
J Allergy Clin Immunol ; 141(1): 382-390.e7, 2018 01.
Article in English | MEDLINE | ID: mdl-28629745

ABSTRACT

BACKGROUND: Childhood exposure to a farm environment has been shown to protect against the development of inflammatory diseases, such as allergy, asthma, and inflammatory bowel disease. OBJECTIVE: We sought to investigate whether both exposure to microbes and exposure to structures of nonmicrobial origin, such as the sialic acid N-glycolylneuraminic acid (Neu5Gc), might play a significant role. METHODS: Exposure to Neu5Gc was evaluated by quantifying anti-Neu5Gc antibody levels in sera of children enrolled in 2 farm studies: the Prevention of Allergy Risk factors for Sensitization in Children Related to Farming and Anthroposophic Lifestyle (PARSIFAL) study (n = 299) and the Protection Against Allergy Study in Rural Environments (PASTURE) birth cohort (cord blood [n = 836], 1 year [n = 734], 4.5 years [n = 700], and 6 years [n = 728]), and we associated them with asthma and wheeze. The effect of Neu5Gc was examined in murine airway inflammation and colitis models, and the role of Neu5Gc in regulating immune activation was assessed based on helper T-cell and regulatory T-cell activation in mice. RESULTS: In children anti-Neu5Gc IgG levels correlated positively with living on a farm and increased peripheral blood forkhead box protein 3 expression and correlated inversely with wheezing and asthma in nonatopic subjects. Exposure to Neu5Gc in mice resulted in reduced airway hyperresponsiveness and inflammatory cell recruitment to the lung. Furthermore, Neu5Gc administration to mice reduced the severity of a colitis model. Mechanistically, we found that Neu5Gc exposure reduced IL-17+ T-cell numbers and supported differentiation of regulatory T cells. CONCLUSIONS: In addition to microbial exposure, increased exposure to non-microbial-derived Neu5Gc might contribute to the protective effects associated with the farm environment.


Subject(s)
Colitis/immunology , Colitis/prevention & control , Farmers , Inflammation/immunology , Inflammation/prevention & control , Neuraminic Acids/immunology , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/prevention & control , Age Factors , Allergens/immunology , Animals , Biomarkers , Child , Child, Preschool , Colitis/diagnosis , Cross-Sectional Studies , Disease Models, Animal , Environmental Exposure , Humans , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Infant , Inflammation/diagnosis , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Mice, Knockout , Population Surveillance , Respiratory Tract Diseases/diagnosis , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
16.
ACS Appl Mater Interfaces ; 9(44): 38854-38862, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29053250

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is an attractive tool in the analytical sciences due to its high specificity and sensitivity. Because SERS-active substrates are only available as two-dimensional arrays, the fabrication of three-dimensional (3D) nanostructures allows for an increased number of hot spots in the focus volume, thus further amplifying the SERS signal. Although a great number of fabrication strategies for powerful SERS substrates exist, the generation of 3D nanostructures with high complexity and periodicity is still challenging. For this purpose, we report an easy fabrication technique for 3D nanostructures following a bottom-up preparation protocol. Enzymatically generated silver nanoparticles (EGNPs) are prepared, and the growth of hierarchically-designed 3D flower-like silica-silver composite nanostructures is induced by applying plasma-enhanced atomic layer deposition (PE-ALD) on the EGNPs. The morphology of these nanocomposites can be varied by changes in the PE-ALD cycle number, and a flower height of up to 10 µm is found. Moreover, the metallized (e.g., silver or gold) 3D nanostructures resulting from 135 PE-ALD cycles of silica creation provide highly reproducible SERS signals across the hydrophobic surface. Within this contribution, the morphological studies, optical properties, as well as the SERS response of these metallized silica-silver composite nanostructures applying vitamin B2 as a model analyte are introduced.

17.
Appl Environ Microbiol ; 82(24): 7185-7196, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27736791

ABSTRACT

The immune-modulating properties of certain bifidobacterial strains, such as Bifidobacterium longum subsp. longum 35624 (B. longum 35624), have been well described, although the strain-specific molecular characteristics associated with such immune-regulatory activity are not well defined. It has previously been demonstrated that B. longum 35624 produces a cell surface exopolysaccharide (sEPS), and in this study, we investigated the role played by this exopolysaccharide in influencing the host immune response. B. longum 35624 induced relatively low levels of cytokine secretion from human dendritic cells, whereas an isogenic exopolysaccharide-negative mutant derivative (termed sEPSneg) induced vastly more cytokines, including interleukin-17 (IL-17), and this response was reversed when exopolysaccharide production was restored in sEPSneg by genetic complementation. Administration of B. longum 35624 to mice of the T cell transfer colitis model prevented disease symptoms, whereas sEPSneg did not protect against the development of colitis, with associated enhanced recruitment of IL-17+ lymphocytes to the gut. Moreover, intranasal administration of sEPSneg also resulted in enhanced recruitment of IL-17+ lymphocytes to the murine lung. These data demonstrate that the particular exopolysaccharide produced by B. longum 35624 plays an essential role in dampening proinflammatory host responses to the strain and that loss of exopolysaccharide production results in the induction of local TH17 responses. IMPORTANCE: Particular gut commensals, such as B. longum 35624, are known to contribute positively to the development of mucosal immune cells, resulting in protection from inflammatory diseases. However, the molecular basis and mechanisms for these commensal-host interactions are poorly described. In this report, an exopolysaccharide was shown to be decisive in influencing the immune response to the bacterium. We generated an isogenic mutant unable to produce exopolysaccharide and observed that this mutation caused a dramatic change in the response of human immune cells in vitro In addition, the use of mouse models confirmed that lack of exopolysaccharide production induces inflammatory responses to the bacterium. These results implicate the surface-associated exopolysaccharide of the B. longum 35624 cell envelope in the prevention of aberrant inflammatory responses.


Subject(s)
Bifidobacteriales Infections/immunology , Bifidobacterium longum/immunology , Polysaccharides, Bacterial/immunology , Th17 Cells/immunology , Animals , Bifidobacteriales Infections/microbiology , Bifidobacterium longum/genetics , Cytokines/immunology , Female , Humans , Interleukin-17/immunology , Mice , Mice, Inbred BALB C
18.
Nano Lett ; 16(9): 5728-36, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27547860

ABSTRACT

Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize. Herein, we introduce the concept of nanoruler excitation by direct, electrically induced generation of surface plasmons based on the quantum shot noise of tunneling currents. An electron tunneling junction consisting of a metal-dielectric-semiconductor heterostructure is directly incorporated into the nanoruler basic geometry. With the application of voltage on this modified nanoruler, the plasmon modes are directly excited without any additional optical component as a light source. We demonstrate via several experiments that this electrically driven nanoruler possesses similar properties as an optically exited one and confirm its sensing capabilities by the detection of the binding of small biomolecules such as antibodies. This new sensing principle could open the way to a new platform of highly miniaturized, integrated plasmonic sensors compatible with monolithic integrated circuits.


Subject(s)
Electricity , Metal Nanoparticles , Surface Plasmon Resonance , Metals , Serum Albumin, Bovine
19.
Bone ; 83: 82-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26525592

ABSTRACT

Post-traumatic bone fractures are commonly fixed with implanted devices to restore the anatomical position of bone fragments and aid in the healing process. Bacterial infection in this situation is a challenge for clinicians due to the need for aggressive antibiotic therapy, debridement of infected tissues, and the need to maintain fracture stability. The aim of this study was to monitor immune responses that occur during healing and during Staphylococcus aureus infection, in a clinically relevant murine model of fracture fixation. Skeletally mature C57bl/6 mice received a transverse osteotomy of the femur, which was treated with commercially available titanium fracture fixation plates and screws. In the absence of infection, healing of the fracture was complete within 35days and was characterized by elevated Interleukin (IL)-4 and Interferon-gamma secretion from bone-derived cells and expression of these same genes. In contrast, mice inoculated with S. aureus could not heal the fracture within the observation period and were found to develop typical signs of implant-associated bone infection, including biofilm formation on the implant and osteolysis of surrounding bone. The immune response to infection was characterized by a TH17-led bone response, and a pro-inflammatory cytokine-led Tumor necrosis factor (TNF)-α, Interleukin (IL)-1ß) soft tissue response, both of which were ineffectual in clearing implant related bone and soft tissue infections respectively. In this murine model, we characterize the kinetics of pro-inflammatory responses to infection, secondary to bone trauma and surgery. A divergent local immune polarization is evident in the infected versus non-infected animals, with the immune response ultimately unable to clear the S. aureus infection.


Subject(s)
Fracture Fixation , Monitoring, Immunologic , Osteomyelitis/immunology , Osteomyelitis/microbiology , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Adaptive Immunity , Animals , Cell Count , Cell Separation , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Fracture Healing , Gene Expression Regulation , Lymph Nodes/immunology , Lymph Nodes/pathology , Mice, Inbred C57BL , Osteomyelitis/complications , Osteomyelitis/diagnostic imaging , Osteotomy , Radiography , Real-Time Polymerase Chain Reaction , Staphylococcal Infections/complications , Staphylococcal Infections/diagnostic imaging
20.
PLoS One ; 10(3): e0120261, 2015.
Article in English | MEDLINE | ID: mdl-25816321

ABSTRACT

The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses.


Subject(s)
Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Lacticaseibacillus rhamnosus/immunology , Lectins, C-Type/immunology , Monocytes/immunology , Receptors, Cell Surface/immunology , Toll-Like Receptor 2/immunology , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/cytology , Humans , Immunologic Factors/pharmacology , Lymphocyte Activation/immunology , Monocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...