Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 371
Filter
1.
J Clin Transl Endocrinol ; 37: 100362, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39188269

ABSTRACT

Background: Cystic fibrosis (CF) is a multi-organ disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). Individuals with CF often have gastrointestinal (GI) dysbiosis due to chronic inflammation and antibiotic use. Previous studies suggested a role for vitamin D in reversing the GI dysbiosis found in CF. Objective: To explore the potential role of a combination of high-dose oral cholecalciferol (vitamin D3) and fermentable dietary fiber, inulin, to impact bacterial composition, richness, and diversity of intestinal and airway microbiota in adults with CF. Methods: This was a 2 × 2 factorial, double-blinded, placebo-controlled, randomized, pilot clinical trial in which adults with CF received oral cholecalciferol (vitamin D3) (50,000 IU/week) and/or inulin (12 g/day) for 12 weeks. Thus, there were 4 study groups (n = 10 subjects per group); 1) placebo 2) vitamin D3 3) inulin 4) vitamin D3 plus inulin. Stool and sputum samples were collected at baseline (just before) and after the intervention and were analysed using 16S ribosomal RNA gene sequencing for gut and airway microbiota composition. Statistical analyses assessed alpha and beta diversity to evaluate microbial community changes. Results: Of a total of 254 screened participants, 40 eligible participants were randomized to one of the 4 treatment arms. Participants receiving vitamin D3 plus inulin exhibited greater changes in microbiome indexes in both intestinal and airway relative to those in the other study groups. Specific taxonomic changes supported the potential beneficial influence of this combination to mitigate both intestinal and airway dysbiosis in adults with CF. Conclusion: This pilot study established that the combination of oral vitamin D3 and the prebiotic inulin was well tolerated over 12 weeks in adults with CF and altered gut and airway bacterial communities. Future research appear warranted to define clinical outcomes and the role of microbiota changes therein with this approach.

2.
Metabolomics ; 20(4): 83, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066851

ABSTRACT

INTRODUCTION: Thiamine (Vitamin B1) is an essential micronutrient and is classically considered a co-factor in energy metabolism. The association between thiamine status and whole-body metabolism in critical illness has not been studied. OBJECTIVES: To determine association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites and connected metabolic pathways using high resolution metabolomics (HRM) in critically ill patients. METHODS: Cross-sectional study performed at Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were critically ill adults with an expected length of intensive care unit stay longer than 48 h and receiving chronic furosemide therapy. A total of 76 participants were included. Mean age was 69 years (range 33-92 years); 65% were female. Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP was measured by HPLC and plasma HRM was performed using liquid chromatography/mass spectrometry. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies (MWAS). MWAS using the highest and lowest TPP concentration tertiles was performed as a secondary analysis. RESULTS: Specific metabolic pathways associated with whole blood TPP levels in regression and tertile analysis included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. CONCLUSIONS: Plasma HRM revealed that thiamine status, determined by whole blood TPP concentrations, was significantly associated with metabolites and metabolic pathways related to metabolism of energy, carbohydrates, amino acids, lipids, and the gut microbiome in adult critically ill patients.


Subject(s)
Critical Illness , Metabolomics , Thiamine , Humans , Female , Male , Metabolomics/methods , Aged , Middle Aged , Adult , Cross-Sectional Studies , Aged, 80 and over , Thiamine/blood , Thiamine/metabolism , Intensive Care Units , Thiamine Pyrophosphate/blood , Metabolome
3.
Article in English | MEDLINE | ID: mdl-38788347

ABSTRACT

BACKGROUND: Linoleic acid (LNA), an essential polyunsaturated fatty acid (PUFA), plays a crucial role in cellular functions. However, excessive intake of LNA, characteristic of Western diets, can have detrimental effects on cells and organs. Human observational studies have shown an inverse relationship between plasma LNA concentrations and bone mineral density. The mechanism by which LNA impairs the skeleton is unclear, and there is a paucity of research on the effects of LNA on bone-forming osteoblasts. METHODS: The effect of LNA on osteoblast differentiation, cellular bioenergetics, and production of oxidized PUFA metabolites in vitro, was studied using primary mouse bone marrow stromal cells (BMSC) and MC3T3-E1 osteoblast precursors. RESULTS: LNA treatment decreased alkaline phosphatase activity, an early marker of osteoblast differentiation, but had no effect on committed osteoblasts or on mineralization by differentiated osteoblasts. LNA suppressed osteoblast commitment by blunting the expression of Runx2 and Osterix, key transcription factors involved in osteoblast differentiation, and other key osteoblast-related factors involved in bone formation. LNA treatment was associated with increased production of oxidized LNA- and arachidonic acid-derived metabolites and blunted oxidative phosphorylation, resulting in decreased ATP production. CONCLUSION: Our results show that LNA inhibited early differentiation of osteoblasts and this inhibitory effect was associated with increased production of oxidized PUFA metabolites that likely impaired energy production via oxidative phosphorylation.


Subject(s)
Cell Differentiation , Linoleic Acid , Osteoblasts , Oxidative Phosphorylation , Animals , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/drug effects , Mice , Oxidative Phosphorylation/drug effects , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Alkaline Phosphatase/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cells, Cultured
4.
Zookeys ; 1197: 93-113, 2024.
Article in English | MEDLINE | ID: mdl-38628553

ABSTRACT

We describe a new treefrog species from Lao Cai Province, northwestern Vietnam. The new species is assigned to the genus Zhangixalus based on a combination of the following morphological characters: (1) dorsum green, smooth; body size medium (SVL 30.1-32.2 in males); (2) fingers webbed; tips of digits expanded into large disks, bearing circum-marginal grooves; (3) absence of dermal folds along limbs; (4) absence of supracloacal fold and tarsal projection. The new species can be distinguished from its congeners by: (1) dorsal surface of the head and body green without spots; (2) axilla and groin cream with a black blotch; (3) ventral cream without spot; (4) chin creamy with grey marbling; anterior part of the thigh and ventral surface of tibia orange without spots; posterior parts of thigh orange with a large black blotch; (5) ventral side of webbing orange with some grey pattern (6) iris red-bronze, pupils black; (7) finger webbing formula I1»-1»II1-2III1-1IV, toe webbing formula I½-½II0-1½III»-1¾IV1¾-½V. Phylogenetically, the new species is nested in the same subclade as Z.jodiae, Z.pinglongensis, and Z.yaoshanensis, with genetic distances ranging from 3.23% to 4.68%. The new species can be found in evergreen montane tropical forests at an elevation of about 1,883 m a.s.l. This new discovery brings the number of known genus Zhangixalus species to 42 and the number of species reported from Vietnam to 10.

5.
Contemp Clin Trials Commun ; 38: 101278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38435430

ABSTRACT

Individuals with cystic fibrosis (CF) have dysfunctional intestinal microbiota and increased gastrointestinal (GI) inflammation also known as GI dysbiosis. It is hypothesized that administration of high-dose cholecalciferol (vitamin D3) together with a prebiotic (inulin) will be effective, and possibly additive or synergistic, in reducing CF-related GI and airway dysbiosis. Thus, a 2 x 2 factorial design, placebo-controlled, double-blinded, pilot and feasibility, clinical trial was proposed to test this hypothesis. Forty adult participants with CF were block-randomized into one of four groups: 1) high-dose oral vitamin D3 (50,000 IU weekly) plus oral prebiotic placebo daily; 2) oral prebiotic (12 g inulin daily) plus oral placebo vitamin D3 weekly; 3) combined oral vitamin D3 weekly and oral prebiotic inulin daily; and 4) oral vitamin D3 placebo weekly and oral prebiotic placebo. The primary endpoints included 12-week changes in the microbial bacterial communities, gut and airway microbiota richness and diversity before and after the intervention. This pilot study examined whether vitamin D3 with or without prebiotics supplementation was feasible, changed airway and gut microbiota, and reduced dysbiosis, which in turn, may improve health outcomes and quality of life of patients with CF.

6.
medRxiv ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38343807

ABSTRACT

Individuals with cystic fibrosis (CF) often incur damage to pancreatic tissue due to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, leading to altered chloride transport on epithelial surfaces and subsequent development of cystic fibrosis-related diabetes (CFRD). Vitamin D deficiency has been associated with the development of CFRD. This was a secondary analysis of a multicenter, double-blind, randomized, placebo-controlled study in adults with CF hospitalized for an acute pulmonary exacerbation (APE), known as the Vitamin D for the Immune System in Cystic Fibrosis (DISC) trial (NCT01426256). This was a pre-planned secondary analysis to examine if a high-dose bolus of cholecalciferol (vitamin D3) can mitigate declined glucose tolerance commonly associated with an acute pulmonary exacerbation (APE). Glycemic control was assessed by hemoglobin A1c (HbA1c) and fasting blood glucose levels before and 12 months after the study intervention. Within 72 hours of hospital admission, participants were randomly assigned to a single dose of oral vitamin D3 (250,000 IU) or placebo, and subsequently, received 50,000 IU of vitamin D3 or placebo every other week, beginning at month 3 and ending on month 12. Forty-nine of the 91 participants in the parent study were eligible for the secondary analysis. There were no differences in 12-month changes in HbA1c or fasting blood glucose in participants randomized to vitamin D or placebo. A high-dose bolus of vitamin D3 followed by maintenance vitamin D3 supplementation did not improve glycemic control in patients with CF after an APE.

7.
medRxiv ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38343811

ABSTRACT

Individuals with cystic fibrosis (CF) have dysfunctional intestinal microbiota and increased gastrointestinal (GI) inflammation also known as GI dysbiosis. It is hypothesized that administration of high-dose cholecalciferol (vitamin D3) together with a prebiotic (inulin) will be effective, and possibly additive or synergistic, in reducing CF-related GI dysbiosis and improving intestinal functions. Thus, a 2 × 2 factorial design, placebo-controlled, double-blind, clinical trial was proposed to test this hypothesis. Forty adult participants with CF will be block-randomized into one of four groups: 1) high-dose oral vitamin D3 (50,000 IU weekly) plus oral prebiotic placebo daily; 2) oral prebiotic (12 g inulin daily) plus oral placebo vitamin D3 weekly; 3) combined oral vitamin D3 weekly and oral prebiotic inulin daily; and 4) oral vitamin D3 placebo weekly and oral prebiotic placebo. The primary endpoints will include 12-week changes in the reduced relative abundance of gammaproteobacteria, and gut microbiota richness and diversity before and after the intervention. This clinical study will examine whether vitamin D3 with or without prebiotics will improve intestinal health and reduce GI dysbiosis, which in turn, should improve health outcomes and quality of life of patients with CF.

8.
BMJ Open ; 14(2): e081379, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316601

ABSTRACT

INTRODUCTION: Recently published studies support the beneficial effects of consuming fibre-rich legumes, such as cooked dry beans, to improve metabolic health and reduce cancer risk. In participants with overweight/obesity and a history of colorectal polyps, the Fibre-rich Foods to Treat Obesity and Prevent Colon Cancer randomised clinical trial will test whether a high-fibre diet featuring legumes will simultaneously facilitate weight reduction and suppress colonic mucosal biomarkers of colorectal cancer (CRC). METHODS/DESIGN: This study is designed to characterise changes in (1) body weight; (2) biomarkers of insulin resistance and systemic inflammation; (3) compositional and functional profiles of the faecal microbiome and metabolome; (4) mucosal biomarkers of CRC risk and (5) gut transit. Approximately 60 overweight or obese adults with a history of noncancerous adenomatous polyps within the previous 3 years will be recruited and randomised to one of two weight-loss diets. Following a 1-week run-in, participants in the intervention arm will receive preportioned high-fibre legume-rich entrées for two meals/day in months 1-3 and one meal/day in months 4-6. In the control arm, entrées will replace legumes with lean protein sources (eg, chicken). Both groups will receive in-person and written guidance to include nutritionally balanced sides with energy intake to lose 1-2 pounds per week. ETHICS AND DISSEMINATION: The National Institutes of Health fund this ongoing 5-year study through a National Cancer Institute grant (5R01CA245063) awarded to Emory University with a subaward to the University of Pittsburgh. The study protocol was approved by the Emory Institutional Review Board (IRB approval number: 00000563). TRIAL REGISTRATION NUMBER: NCT04780477.


Subject(s)
Adenomatous Polyps , Colonic Neoplasms , Fabaceae , Gastrointestinal Microbiome , Adult , Humans , Overweight/complications , Overweight/therapy , Obesity/complications , Obesity/therapy , Colonic Neoplasms/prevention & control , Adenomatous Polyps/complications , Vegetables , Metabolome , Biomarkers , Randomized Controlled Trials as Topic
9.
Zookeys ; 1192: 83-102, 2024.
Article in English | MEDLINE | ID: mdl-38419746

ABSTRACT

We describe a new species of the genus Cyrtodactylus based on five adult specimens from Bac Ha District, Lao Cai Province, northern Vietnam. Cyrtodactyluslucisp. nov. is distinguished from the remaining Indochinese bent-toed geckos by a combination of the following morphological characteristics: medium size (SVL up to 89.5 mm); dorsal tubercles in 17-19 irregular transverse rows; ventral scales in 32-34 longitudinal rows at midbody; precloacal pores present in both sexes, 9 or 10 in males, 8 or 9 in females; 12-15 enlarged femoral scales on each thigh; femoral pores 9-12 in males, 5-10 in females; postcloacal tubercles 2-4; lamellae under toe IV 21-23; dorsal pattern consisting of 5 or 6 irregular dark bands, a thin neckband without V-shape or triangle shape in the middle, top of head with dark brown blotches; subcaudal scales transversely enlarged. Molecular phylogenetic analyses recovered the new species as the sister taxon to C.gulinqingensis from Yunnan Province, China, with strong support from all analyses and the two taxa are separated by approximately 8.87-9.22% genetic divergence based on a fragment of the mitochondrial ND2 gene. This is the first representative of Cyrtodactylus known from Lao Cai Province.

10.
Curr Opin Gastroenterol ; 40(2): 99-105, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38193299

ABSTRACT

PURPOSE OF REVIEW: This review addresses the newest findings on micronutrient status and protein-energy malnutrition in the increasingly aging global population; understanding the nutritional challenges they face is vital for healthcare, well being, and public health. RECENT FINDINGS: The review examines deficiencies in macro- and micronutrients among nonhospitalized, free-living older adults, revealing significant associated health consequences, including frailty, cognitive decline, and reduced quality of life. Deficiencies in fat-soluble vitamins such as A, D, and E, are common in older populations, emphasizing the need for close monitoring for status of these. Furthermore, water-soluble vitamin deficiencies, especially vitamins B12 and C are also common, and pose health risks, including neurological disorders and cognitive decline. Iron and iodine deficiencies contribute to anemia, and neurocognitive disorders. Finally, protein-energy malnutrition is common in older adults living in high-resource countries and may occur concomitant with depletion of one or more micronutrients. SUMMARY: Addressing specific nutritional deficiencies is fundamental to enhancing the wellbeing and quality of life for free-living older adults. Protein-energy malnutrition, impacting over 25% of those aged 65 and above, results in a range of health issues, including poor wound healing, susceptibility to infections, anemia, and delayed convalescence. These concerns are aggravated by inadequate energy, macronutrient, and micronutrient intake, affecting muscle strength and overall health. Future research should focus on tailored appropriate monitoring of at-risk individuals, specific nutritional interventions, and dietary strategies to mitigate these issues and improve health outcomes among older adults.


Subject(s)
Anemia , Malnutrition , Protein-Energy Malnutrition , Trace Elements , Humans , Aged , Nutritional Status , Micronutrients , Quality of Life , Vitamins
11.
Ophthalmol Retina ; 8(2): 126-136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37673395

ABSTRACT

PURPOSE: To explore the risk factors and fundus imaging features of vitamin A deficiency retinopathy (VADR) in an academic tertiary referral center in Atlanta, GA, United States, and to propose guidance regarding diagnostic workup and management of affected patients. DESIGN: Single-center retrospective case series. SUBJECTS: Nine patients seen between 2015 and 2021 at the Emory Eye Center diagnosed with VADR. METHODS: Retrospective chart review. MAIN OUTCOME MEASURES: Baseline serum retinol level, Snellen visual acuity, multimodal fundus imaging findings, and electroretinography findings. RESULTS: Nine patients, 4 (44.4%) female, with a median (range) age of 68 (50-75) years were identified. The most common underlying etiologies for vitamin A deficiency included history of gastrointestinal surgery (55.6%), liver disease (44.4%), and nutritional depletion due to low-quality diet (44.4%). Only 1 (11.1%) patient had a history of bariatric surgery. Four (44.4%) patients were on some form of vitamin A supplementation before the diagnosis of VADR. Median (range) serum retinol level was 0.06 (< 0.06-0.19) mg/L. All patients had macular subretinal hyperreflective deposits resembling subretinal drusenoid deposits, although in some cases, these were scant and sparsely distributed. Six eyes of 3 patients with longstanding deficiency had defects in the external limiting membrane (ELM). Three of these eyes additionally had macular areas of complete retinal pigment epithelium and outer retinal atrophy (cRORA). Full-field electroretinography demonstrated severe rod dysfunction and mild to moderate cone system dysfunction. Many findings of VADR were reversible with vitamin A repletion. However, all eyes with ELM defects or cRORA had persistence or continued growth of these lesions. CONCLUSION: Vitamin A deficiency retinopathy is uncommon in the developed world. However, given that early intervention can lead to dramatic visual improvement and avoid potentially permanent retinal damage, retina specialists should be familiar with its clinical presentation. The presence of nyctalopia and subretinal hyperreflective deposits in a patient with a history of gastrointestinal surgery, liver disease, and/or poor diet can be suggestive of this diagnosis, even in the presence of ongoing vitamin A supplementation. Vitamin A supplementation can vary in route and dosage and can be tailored to the individual with serial testing of serum retinol. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.


Subject(s)
Liver Diseases , Retinal Degeneration , Vitamin A Deficiency , Humans , Female , United States/epidemiology , Aged , Male , Vitamin A , Vitamin A Deficiency/complications , Vitamin A Deficiency/diagnosis , Retrospective Studies , Tertiary Care Centers , Fluorescein Angiography/methods
12.
J Infect Dis ; 229(4): 1189-1199, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37740551

ABSTRACT

BACKGROUND: High-resolution metabolomics (HRM) is an innovative tool to study challenging infectious diseases like leprosy, where the pathogen cannot be grown with standard methods. Here, we use HRM to better understand associations between disease manifestations, nutrition, and host metabolism. METHODS: From 2018 to 2019, adults with leprosy and controls were recruited in Minas Gerais, Brazil. Plasma metabolites were detected using an established HRM workflow and characterized by accurate mass, mass to charge ratio m/z and retention time. The mummichog informatics package compared metabolic pathways between cases and controls and between multibacillary (MB) and paucibacillary (PB) leprosy. Additionally, select individual metabolites were quantified and compared. RESULTS: Thirty-nine cases (62% MB and 38% PB) and 25 controls were enrolled. We found differences (P < .05) in several metabolic pathways, including fatty acid metabolism, carnitine shuttle, retinol, vitamin D3, and C-21 steroid metabolism, between cases and controls with lower retinol and associated metabolites in cases. Between MB and PB, leukotrienes, prostaglandins, tryptophan, and cortisol were all found to be lower in MB (P < .05). DISCUSSION: Metabolites associated with several nutrient-related metabolic pathways appeared differentially regulated in leprosy, especially MB versus PB. This pilot study demonstrates the metabolic interdependency of these pathways, which may play a role in the pathophysiology of disease.


Subject(s)
Leprosy , Micronutrients , Adult , Humans , Fatty Acids , Pilot Projects , Vitamin A , Mycobacterium leprae
13.
Evolution ; 78(2): 355-363, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37952174

ABSTRACT

Although sex determination is ubiquitous in vertebrates, mechanisms of sex determination vary from environmentally to genetically influenced. In vertebrates, genetic sex determination is typically accomplished with sex chromosomes. Groups like mammals maintain conserved sex chromosome systems, while sex chromosomes in most vertebrate clades are not conserved across similar evolutionary timescales. One group inferred to have an evolutionarily stable mode of sex determination is Anguimorpha, a clade of charismatic taxa including monitor lizards, Gila monsters, and crocodile lizards. The common ancestor of extant anguimorphs possessed a ZW system that has been retained across the clade. However, the sex chromosome system in the endangered, monotypic family of crocodile lizards (Shinisauridae) has remained elusive. Here, we analyze genomic data to demonstrate that Shinisaurus has replaced the ancestral anguimorph ZW system on LG7 with a novel ZW system on LG3. The linkage group, LG3, corresponds to chromosome 9 in chicken, and this is the first documented use of this syntenic block as a sex chromosome in amniotes. Additionally, this ~1 Mb region harbors approximately 10 genes, including a duplication of the sex-determining transcription factor, Foxl2, critical for the determination and maintenance of sexual differentiation in vertebrates, and thus a putative primary sex-determining gene for Shinisaurus.


Subject(s)
Lizards , Animals , Lizards/genetics , Sex Chromosomes , Snakes/genetics , Genome , Genomics , Sex Determination Processes , Mammals/genetics
14.
J Labelled Comp Radiopharm ; 67(2): 40-58, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38155110

ABSTRACT

One of the key strategies for radiochemical research facilities is the automation of synthesis processes. Unnecessary manual operations increase the radiation exposure of personnel, while simultaneously threatening the reliability of syntheses. We have previously reported an affordable open-source system comprising 3D-printed continuous flow reactors, a custom syringe pump, and a pressure regulator that can be used to perform radiofluorinations. In this paper, we address additional essential processes that are needed for radiotracer development and synthesis, with the aim of making laboratory work safer and research more efficient. We have designed and evaluated a fully automated system for rapidly and effectively processing and drying aqueous [18 F]fluoride that can be directly connected to the cyclotron. This process relies on triflyl fluoride gas generation and allows nucleophilic [18 F]fluoride to be prepared safely in a hotcell within 10 min and an activity recovery of 91.7 ± 1.6% (n = 5). Owing to the need for convenient radiofluorinated prosthetic ligands, we have adapted our continuous flow system to produce [18 F]fluoroethyl tosylate (FEOTs) and [18 F]fluoroethyl triflate (FEOTf), prosthetic groups that are widely used for late-stage fluoroethylation of PET tracers. The processes as well as the radiolabeling of different groups are compared and comprehensively discussed. Having a method providing [18 F]fluoroethyl tosylate (FEOTs) as well as [18 F]fluoroethyl triflate (FEOTf) quickly and highly efficiently is beneficial for radiochemical research.


Subject(s)
Benzenesulfonates , Fluorides , Positron-Emission Tomography , Positron-Emission Tomography/methods , Reproducibility of Results , Automation , Radiopharmaceuticals , Fluorine Radioisotopes
15.
Sci Transl Med ; 15(720): eabo2750, 2023 11.
Article in English | MEDLINE | ID: mdl-37910603

ABSTRACT

Multidrug-resistant organism (MDRO) colonization is a fundamental challenge in antimicrobial resistance. Limited studies have shown that fecal microbiota transplantation (FMT) can reduce MDRO colonization, but its mechanisms are poorly understood. We conducted a randomized, controlled trial of FMT for MDRO decolonization in renal transplant recipients called PREMIX (NCT02922816). Eleven participants were enrolled and randomized 1:1 to FMT or an observation period followed by delayed FMT if stool cultures were MDRO positive at day 36. Participants who were MDRO positive after one FMT were treated with a second FMT. At last visit, eight of nine patients who completed all treatments were MDRO culture negative. FMT-treated participants had longer time to recurrent MDRO infection versus PREMIX-eligible controls who were not treated with FMT. Key taxa (Akkermansia muciniphila, Alistipes putredinis, Phocaeicola dorei, Phascolarctobacterium faecium, Alistipes species, Mesosutterella massiliensis, Barnesiella intestinihominis, and Faecalibacterium prausnitzii) from the single feces donor used in the study that engrafted in recipients and metabolites such as short-chain fatty acids and bile acids in FMT-responding participants uncovered leads for rational microbiome therapeutic and diagnostic development. Metagenomic analyses revealed a previously unobserved mechanism of MDRO eradication by conspecific strain competition in an FMT-treated subset. Susceptible Enterobacterales strains that replaced baseline extended-spectrum ß-lactamase-producing strains were not detectable in donor microbiota manufactured as FMT doses but in one case were detectable in the recipient before FMT. These data suggest that FMT may provide a path to exploit strain competition to reduce MDRO colonization.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Fecal Microbiota Transplantation/adverse effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Feces/microbiology , Treatment Outcome
16.
Res Sq ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014088

ABSTRACT

Background and Aim: Thiamine (Vitamin B1) is an essential micronutrient and a co-factor for metabolic functions related to energy metabolism. We determined the association between whole blood thiamine pyrophosphate (TPP) concentrations and plasma metabolites using high resolution metabolomics in critically ill patients. Methods: Cross-sectional study performed in Erciyes University Hospital, Kayseri, Turkey and Emory University, Atlanta, GA, USA. Participants were ≥ 18 years of age, with an expected length of ICU stay longer than 48 hours, receiving furosemide therapy for at least 6 months before ICU admission. Results: Blood for TPP and metabolomics was obtained on the day of ICU admission. Whole blood TPP concentrations were measured using high-performance liquid chromatography (HPLC). Liquid chromatography/mass spectrometry was used for plasma high-resolution metabolomics. Data was analyzed using regression analysis of TPP levels against all plasma metabolomic features in metabolome-wide association studies. We also compared metabolomic features from patients in the highest TPP concentration tertile to patients in the lowest TPP tertile as a secondary analysis. We enrolled 76 participants with a median age of 69 (range, 62.5-79.5) years. Specific metabolic pathways associated with whole blood TPP levels, using both regression and tertile analysis, included pentose phosphate, fructose and mannose, branched chain amino acid, arginine and proline, linoleate, and butanoate pathways. Conclusions: Plasma high-resolution metabolomics analysis showed that whole blood TPP concentrations are significantly associated with metabolites and metabolic pathways linked to the metabolism of energy, amino acids, lipids, and the gut microbiome in adult critically ill patients.

17.
Biodivers Data J ; 11: e109726, 2023.
Article in English | MEDLINE | ID: mdl-37869589

ABSTRACT

Background: Occidozygashiwandashaensis was recently discovered from Guangxi Province of China. Hylaranalatouchii is a widespread species in southern China, including Hong Kong and Taiwan. Both species are expected to be found in the border areas between Vietnam and China; however, no records of these frogs have been documented from Vietnam so far. New information: We record two species of amphibians for the first time from Vietnam, namely Occidozygashiwandashaensis from Bac Giang Province and Hylaranalatouchii from Hai Phong City and Quang Ninh Province in northern Vietnam. Morphologically, the Vietnamese representatives of O.shiwandashanensis resemble the type series from China. The specimens of H.latouchii from Vietnam slightly differ from the type series from China by having a larger size (SVL 48.6-51.7 mm in males, SVL 58.4 mm in the females vs. 36.0-40.0 mm in males, 42.0-53.0 mm in females). Genetic distances between the Vietnamese records and the type specimens of O.shiwandashanensis from China varied from 0 to 1.5% (16S gene). Genetic divergences between the Vietnamese records and H.latouchii from the type locality were 2.0-2.6% (16S gene). In addition, morphological data and natural history notes of the aforementioned species are provided, based on the new records from Vietnam. -.

18.
Science ; 382(6667): 219-223, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824645

ABSTRACT

Proteins and lipids decorated with glycans are found throughout biological entities, playing roles in biological functions and dysfunctions. Current analytical strategies for these glycan-decorated biomolecules, termed glycoconjugates, rely on ensemble-averaged methods that do not provide a full view of positions and structures of glycans attached at individual sites in a given molecule, especially for glycoproteins. We show single-molecule analysis of glycoconjugates by direct imaging of individual glycoconjugate molecules using low-temperature scanning tunneling microscopy. Intact glycoconjugate ions from electrospray are soft-landed on a surface for their direct single-molecule imaging. The submolecular imaging resolution corroborated by quantum mechanical modeling unveils whole structures and attachment sites of glycans in glycopeptides, glycolipids, N-glycoproteins, and O-glycoproteins densely decorated with glycans.


Subject(s)
Glycoproteins , Polysaccharides , Single Molecule Imaging , Glycoconjugates/chemistry , Glycolipids/chemistry , Glycoproteins/chemistry , Polysaccharides/chemistry , Mucin-1/chemistry
19.
Front Nutr ; 10: 1158452, 2023.
Article in English | MEDLINE | ID: mdl-37799765

ABSTRACT

Objective: Poor diet quality contributes to metabolic dysfunction. This study aimed to gain a greater understanding of the relationship between dietary macronutrient quality and glucose homeostasis in adults with cystic fibrosis (CF). Design: This was a cross-sectional study of N = 27 adults with CF with glucose tolerance ranging from normal (n = 9) to prediabetes (n = 6) to being classified as having cystic fibrosis-related diabetes (CFRD, n = 12). Fasted blood was collected for analysis of glucose, insulin, and C-peptide. Insulin resistance was assessed by Homeostatic Model Assessment for Insulin Resistance (HOMA2-IR). Subjects without known CFRD also underwent a 2-h oral glucose tolerance test. Three-day food records were used to assess macronutrient sources. Dietary variables were adjusted for energy intake. Statistical analyses included ANOVA, Spearman correlations, and multiple linear regression. Results: Individuals with CFRD consumed less total fat and monounsaturated fatty acids (MUFA) compared to those with normal glucose tolerance (p < 0.05). In Spearman correlation analyses, dietary glycemic load was inversely associated with C-peptide (rho = -0.28, p = 0.05). Total dietary fat, MUFA, and polyunsaturated fatty acids (PUFA) were positively associated with C-peptide (rho = 0.39-0.41, all p < 0.05). Plant protein intake was inversely related to HOMA2-IR (rho = -0.28, p = 0.048). Associations remained significant after adjustment for age and sex. Discussion: Improvements in diet quality are needed in people with CF. This study suggests that higher unsaturated dietary fat, higher plant protein, and higher carbohydrate quality were associated with better glucose tolerance indicators in adults with CF. Larger, prospective studies in individuals with CF are needed to determine the impact of diet quality on the development of CFRD.

20.
BMC Zool ; 8(1): 19, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684659

ABSTRACT

BACKGROUND: Ecomorphological studies of lizards have increasingly employed comparison of claw morphology among species in relation to spatial niche use. Typically, such studies focus on digit IV of the autopodia, especially the pes. Uniformity of claw morphology among digits is more often implicitly assumed than tested. RESULTS: Using four species of Cyrtodactylus, comprising two generalist and two scansorial taxa that use different substrates, we examined whether claw morphology is uniform among digits and among species. We found that, within each species, ventral claw curvature is uniform across all digits whereas there are small but insignificant differences in ventral claw length and claw depth. The claws of the pes of each species are longer and deeper than those of the corresponding digits of the manus. The claw of digit I of each species is significantly shorter and shallower on both autopodia compared to those on digits IV and V (digit I, including its claw, is idiosyncratically variable among lizards in general). CONCLUSIONS: We conclude that digit IV is an adequate representative of claw form in each species and exhibits variation among species, thereby serving as an exemplar for use in studies of potential discrimination between ecomorphological types in studies of Cyrtodactylus.

SELECTION OF CITATIONS
SEARCH DETAIL