Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 148: 107432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744169

ABSTRACT

Adenylate kinase (AK) plays a crucial role in the metabolic monitoring of cellular adenine nucleotide homeostasis by catalyzing the reversible transfer of a phosphate group between ATP and AMP, yielding two ADP molecules. By regulating the nucleotide levels and energy metabolism, the enzyme is considered a disease modifier and potential therapeutic target for various human diseases, including malignancies and inflammatory and neurodegenerative disorders. However, lacking approved drugs targeting AK hinders broad studies on this enzyme's pathological importance and therapeutic potential. In this work, we determined the effect of a series of dinucleoside polyphosphate derivatives, commercially available (11 compounds) and newly synthesized (8 compounds), on the catalytic activity of human adenylate kinase isoenzyme 1 (hAK1). The tested compounds belonged to the following groups: (1) diadenosine polyphosphates with different phosphate chain lengths, (2) base-modified derivatives, and (3) phosphate-modified derivatives. We found that all the investigated compounds inhibited the catalytic activity of hAK1, yet with different efficiencies. Three dinucleoside polyphosphates showed IC50 values below 1 µM, and the most significant inhibitory effect was observed for P1-(5'-adenosyl) P5-(5'-adenosyl) pentaphosphate (Ap5A). To understand the observed differences in the inhibition efficiency of the tested dinucleoside polyphosphates, the molecular docking of these compounds to hAK1 was performed. Finally, we conducted a quantitative structure-activity relationship (QSAR) analysis to establish a computational prediction model for hAK1 modulators. Two PLS-regression-based models were built using kinetic data obtained from the AK1 activity analysis performed in both directions of the enzymatic reaction. Model 1 (AMP and ATP synthesis) had a good prediction power (R2 = 0.931, Q2 = 0.854, and MAE = 0.286), while Model 2 (ADP synthesis) exhibited a moderate quality (R2 = 0.913, Q2 = 0.848, and MAE = 0.370). These studies can help better understand the interactions between dinucleoside polyphosphates and adenylate kinase to attain more effective and selective inhibitors in the future.


Subject(s)
Adenylate Kinase , Dinucleoside Phosphates , Quantitative Structure-Activity Relationship , Humans , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/chemical synthesis , Dinucleoside Phosphates/pharmacology , Dinucleoside Phosphates/metabolism , Kinetics , Molecular Structure , Adenylate Kinase/metabolism , Adenylate Kinase/antagonists & inhibitors , Dose-Response Relationship, Drug , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
2.
J Org Chem ; 87(15): 10333-10348, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35857285

ABSTRACT

Herein, we report a straightforward one-step procedure for modifying N-nucleophilic groups in the nucleobases of commercially available nucleoside phosphoramidites. This method involves the deprotonation of amide groups under phase-transfer conditions and subsequent reaction with electrophilic molecules such as alkyl halides or organic isocyanates. Using this approach, we obtained 10 different classes of modified nucleoside phosphoramidites suitable for the synthesis of oligonucleotides, including several noncanonical nucleotides found in natural RNA or DNA (e.g., m6A, i6A, m1A, g6A, m3C, m4C, m3U, m1G, and m2G). Such modification of nucleobases is a common mechanism for post-transcriptional regulation of RNA stability and translational activity in various organisms. To better understand this process, relevant cellular recognition partners (e.g., proteins) must be identified and characterized. However, this step has been impeded by limited access to molecular tools containing such modified nucleotides.


Subject(s)
Nucleosides , Oligoribonucleotides , Oligonucleotides , Organophosphorus Compounds
3.
Org Lett ; 24(27): 4977-4981, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35771144

ABSTRACT

The reaction between ribonucleosides and ex situ generated sulfonyl fluoride has been developed. The reaction takes place at the -NH2 groups of nucleobases, and the resulting nucleosides are equipped with a sulfamoyl fluoride moiety, dubbed SuFNucs. These species undergo a selective sulfur fluoride exchange (SuFEx) reaction with various amines, leading to sulfamide-functionalized derivatives of adenosine, guanosine, and cytidine (SulfamNucs). The scope and examples of further SuFNucs fuctionalization leading to nucleotides, oligonucleotides, and peptide-nucleoside conjugates are presented.


Subject(s)
Nucleosides , Ribonucleosides , Fluorides , Guanosine , Sulfur Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...