Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 57(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803295

ABSTRACT

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic warrants an imperative necessity for effective and safe vaccination, to restrain Coronavirus disease 2019 (COVID-19) including transmissibility, morbidity, and mortality. In this regard, intensive medical and biological research leading to the development of an arsenal of vaccines, albeit incomplete preconditioned evaluation, due to emergency. The subsequent scientific gap raises some concerns in the medical community and the general public. More specifically, the accelerated vaccine development downgraded the value of necessary pre-clinical studies to elicit medium- and long-term beneficial or harmful consequences. Previous experience and pathophysiological background of coronaviruses' infections and vaccine technologies, combined with the global vaccines' application, underlined the obligation of a cautious and qualitative approach, to illuminate potential vaccination-related adverse events. Moreover, the high SARS-CoV-2 mutation potential and the already aggregated genetical alterations provoke a rational vagueness and uncertainty concerning vaccines' efficacy against dominant strains and the respective clinical immunity. This review critically summarizes existing evidence and queries regarding SARS-CoV-2 vaccines, to motivate scientists' and clinicians' interest for an optimal, individualized, and holistic management of this unprecedented pandemic.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , 2019-nCoV Vaccine mRNA-1273 , Adjuvants, Immunologic/adverse effects , Autoimmune Diseases/chemically induced , BNT162 Vaccine , ChAdOx1 nCoV-19 , Drug Approval , Drug Evaluation, Preclinical , Hippocratic Oath , Humans , Long Term Adverse Effects/chemically induced , Models, Animal , Risk Assessment , SARS-CoV-2 , Vaccines, Inactivated/therapeutic use , Vaccines, Synthetic/therapeutic use , mRNA Vaccines
2.
J Musculoskelet Neuronal Interact ; 20(3): 339-346, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877971

ABSTRACT

OBJECTIVES: To examine the effect of denosumab administration in the peripheral blood white cell population, to further elucidate a plausible pathophysiological link between denosumab and osteonecrosis of the jaw. METHODS: Thirty women with osteoporosis, after denosumab treatment were included. Peripheral blood samples were obtained prior to and 48-72 hours following denosumab administration. Flow cytometry gated at the monocyte population for CD14/CD23/CD123/CD16 stainings were performed. RESULTS: We were able to record a number of changes in the monocyte populations between baseline and after denosumab administration. Most importantly, in the monocyte populations we were able to detect statistically significant increased populations of CD14+/CD23+ (p=0.044), CD14-/CD23+ (p=0.044), CD14+/CD123+ (p=0.011), CD14+/CD123- (p=0.011) and CD14-/CD16+ (p=0.028). In contrast, statistically significant decreased populations of CD14-/CD123+ (p=0.034), CD14+/CD16+ (p=0.037) and CD14+/CD16- (p=0.014) were detected. CONCLUSIONS: Our results provide evidence supporting the hypothesis that denosumab administration modifies the monocyte mediated immune response in a manner similar to that of bisphosphonates. This may partly explain the trivial immunity changes recorded with denosumab.


Subject(s)
Bone Density Conservation Agents/adverse effects , Denosumab/adverse effects , Monocytes/drug effects , Osteoporosis, Postmenopausal/drug therapy , Aged , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...