Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Abdom Radiol (NY) ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825609

ABSTRACT

Pancreatic cystic neoplasms are lesions comprised of cystic components that show different biological behaviors, epidemiology, clinical manifestations, imaging features, and malignant potential and management. Benign cystic neoplasms include serous cystic neoplasms (SCAs). Other pancreatic cystic lesions have malignant potential, such as intraductal papillary mucinous neoplasms and mucinous cystic neoplasms. SCAs can be divided into microcystic (classic appearance), honeycomb, oligocystic/macrocystic, and solid patterns based on imaging appearance. They are usually solitary but may be multiple in von Hippel-Lindau disease, which may depict disseminated involvement. The variable appearances of SCAs can mimic other types of pancreatic cystic lesions, and cross-sectional imaging plays an important role in their differential diagnosis. Endoscopic ultrasonography has helped in improving diagnostic accuracy of pancreatic cystic lesions by guiding tissue sampling (biopsy) or cyst fluid analysis. Immunohistochemistry and newer techniques such as radiomics have shown improved performance for preoperatively discriminating SCAs and their mimickers.

3.
Circulation ; 148(20): 1582-1592, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37721051

ABSTRACT

BACKGROUND: Proper nuclear organization is critical for cardiomyocyte function, because global structural remodeling of nuclear morphology and chromatin structure underpins the development and progression of cardiovascular disease. Previous reports have implicated a role for DNA damage in cardiac hypertrophy; however, the mechanism for this process is not well delineated. AMPK (AMP-activated protein kinase) family of proteins regulates metabolism and DNA damage response (DDR). Here, we examine whether a member of this family, SNRK (SNF1-related kinase), which plays a role in cardiac metabolism, is also involved in hypertrophic remodeling through changes in DDR and structural properties of the nucleus. METHODS: We subjected cardiac-specific Snrk-/- mice to transaortic banding to assess the effect on cardiac function and DDR. In parallel, we modulated SNRK in vitro and assessed its effects on DDR and nuclear parameters. We also used phosphoproteomics to identify novel proteins that are phosphorylated by SNRK. Last, coimmunoprecipitation was used to verify Destrin (DSTN) as the binding partner of SNRK that modulates its effects on the nucleus and DDR. RESULTS: Cardiac-specific Snrk-/- mice display worse cardiac function and cardiac hypertrophy in response to transaortic banding, and an increase in DDR marker pH2AX (phospho-histone 2AX) in their hearts. In addition, in vitro Snrk knockdown results in increased DNA damage and chromatin compaction, along with alterations in nuclear flatness and 3-dimensional volume. Phosphoproteomic studies identified a novel SNRK target, DSTN, a member of F-actin depolymerizing factor proteins that directly bind to and depolymerize F-actin. SNRK binds to DSTN, and DSTN downregulation reverses excess DNA damage and changes in nuclear parameters, in addition to cellular hypertrophy, with SNRK knockdown. We also demonstrate that SNRK knockdown promotes excessive actin depolymerization, measured by the increased ratio of G-actin to F-actin. Last, jasplakinolide, a pharmacological stabilizer of F-actin, rescues the increased DNA damage and aberrant nuclear morphology in SNRK-downregulated cells. CONCLUSIONS: These results indicate that SNRK is a key player in cardiac hypertrophy and DNA damage through its interaction with DSTN. This interaction fine-tunes actin polymerization to reduce DDR and maintain proper cardiomyocyte nuclear shape and morphology.


Subject(s)
Actins , Cardiomegaly , Mice , Animals , Actins/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , DNA Damage , Chromatin/metabolism , Protein Serine-Threonine Kinases/metabolism
4.
bioRxiv ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37503243

ABSTRACT

BACKGROUND: Proper nuclear organization is critical for cardiomyocyte (CM) function, as global structural remodeling of nuclear morphology and chromatin structure underpins the development and progression of cardiovascular disease. Previous reports have implicated a role for DNA damage in cardiac hypertrophy, however, the mechanism for this process is not well delineated. AMPK family of proteins regulate metabolism and DNA damage response (DDR). Here, we examine whether a member of this family, SNF1-related kinase (SNRK), which plays a role in cardiac metabolism, is also involved in hypertrophic remodeling through changes in DDR and structural properties of the nucleus. METHODS: We subjected cardiac specific (cs)- Snrk -/- mice to trans-aortic banding (TAC) to assess the effect on cardiac function and DDR. In parallel, we modulated SNRK in vitro and assessed its effects on DDR and nuclear parameters. We also used phospho-proteomics to identify novel proteins that are phosphorylated by SNRK. Finally, co-immunoprecipitation (co-IP) was used to verify Destrin (DSTN) as the binding partner of SNRK that modulates its effects on the nucleus and DDR. RESULTS: cs- Snrk -/- mice display worse cardiac function and cardiac hypertrophy in response to TAC, and an increase in DDR marker pH2AX in their hearts. Additionally, in vitro Snrk knockdown results in increased DNA damage and chromatin compaction, along with alterations in nuclear flatness and 3D volume. Phospho-proteomic studies identified a novel SNRK target, DSTN, a member of F-actin depolymerizing factor (ADF) proteins that directly binds to and depolymerize F-actin. SNRK binds to DSTN, and DSTN downregulation reverses excess DNA damage and changes in nuclear parameters, in addition to cellular hypertrophy, with SNRK knockdown. We also demonstrate that SNRK knockdown promotes excessive actin depolymerization, measured by the increased ratio of globular (G-) actin to F-actin. Finally, Jasplakinolide, a pharmacological stabilizer of F-actin, rescues the increased DNA damage and aberrant nuclear morphology in SNRK downregulated cells. CONCLUSIONS: These results indicate that SNRK is a key player in cardiac hypertrophy and DNA damage through its interaction with DSTN. This interaction fine-tunes actin polymerization to reduce DDR and maintain proper CM nuclear shape and morphology. Clinical Perspective: What is new? Animal hearts subjected to pressure overload display increased SNF1-related kinase (SNRK) protein expression levels and cardiomyocyte specific SNRK deletion leads to aggravated myocardial hypertrophy and heart failure.We have found that downregulation of SNRK impairs DSTN-mediated actin polymerization, leading to maladaptive changes in nuclear morphology, higher DNA damage response (DDR) and increased hypertrophy. What are the clinical implications? Our results suggest that disruption of DDR through genetic loss of SNRK results in an exaggerated pressure overload-induced cardiomyocyte hypertrophy.Targeting DDR, actin polymerization or SNRK/DSTN interaction represent promising therapeutic targets in pressure overload cardiac hypertrophy.

5.
Radiol Cardiothorac Imaging ; 3(3): e200456, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34235440

ABSTRACT

Stanford type B aortic dissection (TBAD) is associated with relatively high rates of morbidity and mortality, and appropriate treatment selection is important for optimizing patient outcomes. Depending on individualized risk factors, clinical presentation, and imaging findings, patients are generally stratified to optimal medical therapy anchored by antihypertensives or thoracic endovascular aortic repair (TEVAR). Using standard anatomic imaging with CT or MRI, several high-risk features including aortic diameter, false lumen (FL) features, size of entry tears, involvement of major aortic branch vessels, or evidence of visceral malperfusion have been used to select patients likely to benefit from TEVAR. However, even with these measures, the number needed to treat for TEVAR remains, and improved risk stratification is needed. Increasingly, the relationship between FL hemodynamics and adverse aortic remodeling in TBAD has been studied, and evolving noninvasive techniques can measure numerous FL hemodynamic parameters that may improve risk stratification. In addition to summarizing the current clinical state of the art for morphologic TBAD evaluation, this review provides a detailed overview of noninvasive methods for TBAD hemodynamics characterization, including computational fluid dynamics and four-dimensional flow MRI. Keywords: CT, Image Postprocessing, MRI, Cardiac, Vascular, Aorta, Dissection © RSNA, 2021.

6.
J Org Chem ; 81(19): 9138-9146, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27617912

ABSTRACT

A novel class of nitrosocarbonyl precursors, N-substituted hydroxamic acids with pyrazolone leaving groups (NHPY), has been synthesized. Under physiological conditions, these compounds generate nitrosocarbonyl intermediates, which upon hydrolysis release nitroxyl (azanone, HNO) in excellent yields. The amount and rate of nitrosocarbonyl generation are dependent on the nature of the pyrazolone leaving groups and significantly on the structural properties of the NHPY donors. Pyrazolones have been found to be efficient nitrosocarbonyl traps, undergoing an N-selective nitrosocarbonyl aldol reaction. This trapping reaction has been used to confirm the involvement of nitrosocarbonyl intermediates in NHPY aqueous decomposition. In addition, NHPY compounds are shown to generate nitrosocarbonyls efficiently under mild basic conditions in organic solvent and may therefore also enjoy synthetic utility.

SELECTION OF CITATIONS
SEARCH DETAIL