Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 16(7): 10566-10580, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35822898

ABSTRACT

Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.


Subject(s)
COVID-19 , Hemostatics , Nanoparticles , Thrombosis , Swine , Animals , Cytokines , Polyesters , Disease Models, Animal , Nanoparticles/therapeutic use , Thrombosis/drug therapy , Polyethylene Glycols
2.
Bioconjug Chem ; 32(10): 2154-2166, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34499487

ABSTRACT

Translation of intravenously administered nanomaterials to the clinic is limited due to adverse infusion reactions. While these reactions are infrequent, with up to 10% prone to experiencing infusion reactions, the reactions can be severe and life-threatening. One of the innate immune pathways, the complement activation pathway, plays a significant role in mediating this response. Nanoparticle surface properties are a relevant design feature, as they control the blood proteins the nanoparticles interact with and allow the nanoparticles to evade the immune reaction. PEGylation of nanosurfaces is critical in improving the blood circulation of nanoparticles and reducing opsonization. Our goal was to understand whether modifying the surface architecture by varying the PEG density and architecture can impact the complement response in vitro. We utilized block copolymers of poly(lactic acid)-b-poly(ethylene glycol) prepared with poly(ethylene glycol) macroinitiators of molecular weights 3400 and 5000 Da. Tracking the complement biomarker C5a, we monitored the impact of changing PEGylation of the nanoparticles. We also investigated how the changing PEG length on the nanoparticle surface impacts further strengthening the stealth properties. Lastly, we determined which cytokines change upon blood incubation with nanoparticles in vitro to understand the extent to which inflammation may occur and the crosstalk between the complement and immune responses. Increasing PEGylation reduced the generation of complement-mediated anaphylatoxin C5a in vitro, with 5000 Da PEG more effectively reducing levels of C5a generated compared to 3400 Da PEG. The insights gathered regarding the impact of PEG density and PEG chain length would be critical in developing stealth nanoparticles that do not lead to infusion reactions upon intravenous administration.


Subject(s)
Opsonization , Polyesters , Lactates , Nanoparticles , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL