Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(22): 9315-9322, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38747185

ABSTRACT

The synthesis of a homochiral building block based on L-tartrate-chromium(III) complex anions is reported. The dinuclear complex anion, which contains two bridging L-tartrate ligands and one aromatic N-donor ligand coordinated to chromium(III) ions, exhibits a boat conformation in which intramolecular resonance-assisted hydrogen bonding is present. The sodium L-tartrate-chromium(III) compound with the formula Na[Cr2(bpy)2(L-tart)2H]·9H2O (1) crystallizes from a methanol-water solution as a high water content material in the monoclinic space group P2. The as-synthesized compound is only stable at high relative humidity and undergoes structural transformations during drying, which are accompanied by water loss. However, these transformations are reversible and upon wetting, the material returns to its high water content structure. Based on a combination of experimental techniques (PXRD, in situ ATR-FTIR and EPR spectroscopy), the structure of the complex anions appears to be insensitive to the humidity variable processes (wetting and drying). Due to the presence of several hydrogen acceptor and donor groups in the L-tartrate-chromium(III) complex anion, we investigated the proton transport properties of a sodium L-tartrate-chromium(III) compound by impedance spectroscopy under dry and wet conditions at different temperatures. Since the relative humidity affects the structural transformations in this system, it also has a large influence on the proton conductivity, which varies by up to four orders of magnitude depending on the degree of hydration. These results confirm that the proton conductivity can be tuned in flexible structures in which non-covalent interactions determine the crystal packing.

2.
Int J Biol Macromol ; 253(Pt 8): 127572, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37866578

ABSTRACT

Divalent metal ions are essential micronutrients for many intercellular reactions. Maintaining their homeostasis is necessary for the survival of bacteria. In Streptococcus gordonii, one of the primary colonizers of the tooth surface, the cellular concentration of manganese ions (Mn2+) is regulated by the manganese-sensing transcriptional factor ScaR which controls the expression of proteins involved in manganese homeostasis. To resolve the molecular mechanism through which the binding of Mn2+ ions increases the binding affinity of ScaR to DNA, a variety of computational (QM and MD) and experimental (ITC, DSC, EMSA, EPR, and CD) methods were applied. The computational results showed that Mn2+ binding induces a conformational change in ScaR that primarily affects the position of the DNA binding domains and, consequently, the DNA binding affinity of the protein. In addition, experimental results revealed a 1:4 binding stoichiometry between ScaR dimer and Mn2+ ions, while the computational results showed that the binding of Mn2+ ions in the primary binding sites is sufficient to induce the observed conformational change of ScaR.


Subject(s)
Bacterial Proteins , Streptococcus gordonii , Humans , Streptococcus gordonii/genetics , Streptococcus gordonii/metabolism , Bacterial Proteins/chemistry , Manganese/metabolism , Cicatrix/metabolism , Binding Sites , DNA/metabolism , Ions , Protein Binding
3.
Inorg Chem ; 62(42): 17219-17227, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37823905

ABSTRACT

A one-dimensional (1D) ladder-like coordination polymer {NH4[{Cu(bpy)}2(C2O4)Fe(C2O4)3]·H2O}n (1; bpy = 2,2'-bipyridine) containing [Cu(bpy)(µ-C2O4)Cu(bpy)]2+ cationic units linked by oxalate groups of [Fe(C2O4)3]3- building blocks was investigated as a new type of photoactive solid-state system. It exhibits a photocoloration effect when exposed to direct sunlight or UV/vis irradiation. The photochromic properties and mechanism were studied by powder and single-crystal X-ray diffraction, UV/vis diffuse reflectance, IR and electron paramagnetic resonance spectroscopy, magnetization and impedance measurements, and density functional theory calculations. The process of photochromism involves simultaneous intramolecular electron transfers from the oxalate ligand to Fe(III) and to [CuII(bpy)(µ-C2O4)CuII(bpy)]2+, leading to the reduction of the metal centers to the electronic states Fe(II) and Cu(I), accompanied by the release of gaseous CO2.

4.
Chem Sci ; 14(35): 9389-9399, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712041

ABSTRACT

Enlarging the quantum coherence times and gaining control over quantum effects in real systems are fundamental for developing quantum technologies. Molecular electron spin qubits are particularly promising candidates for realizing quantum information processing due to their modularity and tunability. Still, there is a constant search for tools to increase their quantum coherence times. Here we present how the mechanochemical introduction of active spin qubits in the form of 10% diluted copper(ii)-porphyrins in the diamagnetic PCN-223 and MOF-525 zirconium-MOF polymorph pair can be achieved. Furthermore, the encapsulation of fullerene during the MOF synthesis directs the process exclusively toward the rare PCN-223 framework with a controllable amount of fullerene in the framework channels. In addition to the templating role, the incorporation of fullerene increases the electron spin-lattice and phase-memory relaxation times, T1 and Tm. Besides decreasing the amount of nuclear spin-bearing solvent guests in the non-activated qubit frameworks, the observed improved relaxation times can be rationalized by modulating the phonon density of states upon fullerene encapsulation.

5.
J Inorg Biochem ; 244: 112232, 2023 07.
Article in English | MEDLINE | ID: mdl-37084582

ABSTRACT

Solution synthesis afforded five novel neutral heteroleptic octahedral paramagnetic mononuclear oxidovanadium(IV) complexes of general composition [VO(bpy)L], where L is a dianionic tridentate ONO-donor hydrazone ligand derived from 2-furoic acid hydrazide and salicylaldehyde and its 5-substituted derivatives. Characterization was carried out by elemental analysis, mass spectrometry, infrared, electron, NMR, and EPR spectroscopy, cyclic voltammetry and conductometry. The molecular and crystal structure of the complex with 5-chloro-salicylaldehyde 2-furoic acid hydrazone (2) was determined. The quantum chemical properties of the vanadium complexes were studied at B3LYP and M062X levels with the lanl2dz basis set using Gaussian. Additionally, Swiss-ADME analysis was performed and complex (4), featuring a 5-nitro substituent on the hydrazone ligand, was selected for further investigation. The effects of the in vivo application of the complex on selected biochemical parameters in healthy and diabetic Wistar rats were investigated. Strong antidiabetic effect associated with moderate hypoalbuminemia was observed. Furthermore, the interaction of complexes with BSA was studied by spectrofluorimetry. A significant conformational change of BSA in the presence of vanadium complexes was found. Synchronous fluorescence spectra revealed significant changes in the tyrosine microenvironment of BSA. The FRET analysis was also used and the non-radiative process of energy transfer is elucidated. Thermodynamic data suggest van der Waals forces and hydrogen bonding as predominant binding modes of complexes to BSA.


Subject(s)
Hydrazones , Vanadium , Animals , Rats , Vanadium/chemistry , Hydrazones/chemistry , Hypoglycemic Agents/pharmacology , Ligands , Rats, Wistar
6.
J Biol Inorg Chem ; 28(3): 263-284, 2023 04.
Article in English | MEDLINE | ID: mdl-36781474

ABSTRACT

Novel ruthenium(III) complexes of general formula Na[RuCl2(L1-3-N,O)2] where L(1-3) denote deprotonated Schiff bases (HL1-HL3) derived from 5-substituted salicyladehyde and alkylamine (propyl- or butylamine) were prepared and characterized based on elemental analysis, mass spectra, infrared, electron spin/paramagnetic resonance (ESR/EPR) spectroscopy, and cyclovoltammetric study. Optimization of five isomers of complex C1 was done by DFT calculation. The interaction of C1-C3 complexes with DNA (Deoxyribonucleic acid) and BSA (Bovine serum albumin) was investigated by electron spectroscopy and fluorescence quenching. The cytotoxic activity of C1-C3 was investigated in a panel of four human cancer cell lines (K562, A549, EA.hy926, MDA-MB-231) and one human non-tumor cell line (MRC-5). Complexes displayed an apparent cytoselective profile, with IC50 values in the low micromolar range from 1.6 ± 0.3 to 23.0 ± 0.1 µM. Cisplatin-resistant triple-negative breast cancer cells MDA-MB-231 displayed the highest sensitivity to complexes, with Ru(III) compound containing two chlorides and two deprotonated N-propyl-5-chloro-salicylidenimine (hereinafter C1) as the most potent (IC50 = 1.6 µM), and approximately ten times more active than cisplatin (IC50 = 21.9 µM). MDA-MB-231 cells treated for 24 h with C1 presented with apoptotic morphology, as seen by acridine orange/ethidium bromide staining, while 48 h of treatment induced DNA fragmentation, and necrotic changes in cells, as seen by flow cytometry analysis. Drug-accumulation study by inductively coupled plasma mass spectrometry (ICP-MS) demonstrated markedly higher intracellular accumulation of C1 compared with cisplatin.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Schiff Bases/chemistry , Humans , Pregnancy , Cell Line, Tumor , Ruthenium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology
7.
Inorg Chem ; 61(45): 18181-18192, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36318217

ABSTRACT

MOF-74 is an archetypal magnetic metal-organic framework (MOF) family, with metal nodes bridged by 2,5-dioxido-1,4-benzenedicarboxylic acid (H4dobdc) and arranged into one of the simplest representations of the 1D Ising magnetic model. Recently, a novel mechano-synthetic approach opened a pathway toward a series of bimetallic multivariate (1:1) M1M2-MOF-74 materials, with the uniform distribution of metal cations in the oxometallic chains, offering a unique opportunity to investigate low-dimensional magnetism in these heterometallic MOFs. We explore here how different mechanochemical procedures affect the interaction between the metal nodes of the model system of three multivariate copper(II)/zinc(II)-MOF-74 materials, two of which were obtained through a template-controlled procedure, and the third one was obtained by recently developed mechanical MOF-alloying combined with subsequent accelerated aging. While the three Cu/Zn-MOF-74 products have almost identical powder X-ray diffraction (PXRD) diffractograms and Fourier transform infrared spectra, they differ significantly in their magnetic properties, as revealed through detailed magnetization and X-band and multifrequency high-field electron spin resonance measurements. The magnetic results of the three multivariate Cu/Zn-MOF-74s were compared to the properties of the monometallic Cu-MOF-74, which shows antiferromagnetic intrachain and weaker ferromagnetic interchain interactions. Energy-dispersive X-ray spectroscopy/scanning electron microscopy and solid-state nuclear magnetic resonance spectroscopy helped rationalize the observed differences in magnetization, and in situ synchrotron PXRD monitoring of template-controlled MOF formation revealed different reaction pathways when using the zinc or copper intermediates, involving even the fleeting occurrence of a rare MOF-74 polymorph.

8.
Heliyon ; 8(6): e09556, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35694423

ABSTRACT

Solution-based and solid-state reactions of copper(ii) compounds, 1,10-phenanthroline and l-threonine were investigated. Eight new ternary coordination compounds were obtained: [Cu(l-Thr)(H2O)(phen)]2SO4∙10H2O (1a∙10H 2 O), [Cu(l-Thr)(H2O) (phen)]2SO4∙4.3H2O (1a∙4.3H 2 O), {[Cu(µ-l-Thr)(phen)]2SO4∙3.5H2O} n (1b∙3.5H 2 O), [Cu(l-Thr)(H2O)(phen)][Cu(l-Thr)(CH3OH)(phen)]SO4∙2H2O∙CH3OH (1c∙2H 2 O∙CH 3 OH), [Cu(l-Thr)(H2O)(phen)][Cu(l-Thr)(CH3OH)(phen)]SO4∙4H2O (1c∙4H 2 O), [Cu(l-Thr)(CH3OH)(phen)]2SO4∙H2O (1d∙H 2 O), [Cu(l-Thr)(H2O)(phen)][Cu(l-Thr)(CH3OH)(phen)][Cu(SO4)(l-Thr)(phen)]HSO4∙H2O∙3CH3OH (1e·H 2 O·3CH 3 OH), [Cu(l-Thr)(H2O)(phen)][Cu(l-Thr)(phen)(py)]SO4 (1f) (phen = 1,10-phenanthroline, l-Thr = l-threoninate, py = pyridine). X-ray crystal structure analysis of the prepared ternary coordination compounds revealed extensive hydrogen bonding and π-interactions that link complex species, anions and solvent molecules into 3D architectures. The water/methanol solvent molecules are found in pockets and/or channels in seven solvates. ESR spectra of different types of compounds were also investigated. In all measured compounds the unpaired electron of the copper(II) ion is located in the dx2-y2 orbital which is in agreement with elongated square-pyramidal geometry. Compound 1a∙10H 2 O showed substantial cytotoxic activity toward human hepatocellular carcinoma (HepG2) and acute monocytic leukaemia (THP-1) cell lines.

9.
Dalton Trans ; 51(6): 2338-2345, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35043132

ABSTRACT

From the reaction of 2-hydroxy-6-methylpyridine (L) with iron(II) tetrafluoroborate, a new mononuclear iron(III) octahedral complex [FeL6](BF4)3 has been isolated. The color of the complex reversibly changed from red at room temperature to yellow-orange at the liquid nitrogen temperature. Magnetization measurements indicate that iron(III) in [FeL6](BF4)3 is in a high-spin state S = 5/2, from room temperature to 1.8 K. The high-spin ground state of iron(III) is also confirmed by DFT calculations. Although the spin-crossover of the complex is not observed, X-band and multifrequency high-field/high-frequency electron spin resonance (ESR) spectroscopy shows rather uncommon iron(III) spectra at room temperature and an unusual change with cooling. Spectral simulations reveal that the S = 5/2 ground state multiplet of the complex can be characterized by the temperature independent axial zero-field splitting parameter of |D| = +2 GHz (0.067 cm-1) while the value of the rhombic parameter E of the order of some tenths MHz increases on lowering the temperature. Single crystal X-ray diffraction (SCXRD) shows that the iron(III) coordination geometry does not change with temperature while supramolecular interactions are temperature dependent, influencing the iron(III) rhombicity. Additionally, the DFT calculations show temperature variation of the HOMO-LUMO gap, in agreement with the changes of color and ESR-spectra of the iron(III) complex with temperature.

10.
RSC Adv ; 11(38): 23779-23790, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-35479809

ABSTRACT

Reactions of N-methylglycine (HMeGly), N-ethylglycine-hydrochloride (H2EtGlyCl) and N-propylglycine-hydrochloride (H2PrGlyCl) with cobalt(ii), nickel(ii) and copper(ii) ions in aqueous solutions resulted in ten new coordination compounds [Co(MeGly)2(H2O)2] (1), [{Co(MeGly)2}2(µ-OH)2]·2H2O (1d), [Cu(MeGly)2(H2O)2] (2α), [Co(EtGly)2(H2O)2] (3), [Ni(EtGly)2(H2O)2] (4), [Cu(µ-EtGly)2] n (5p), [Co(PrGly)2(H2O)2] (6), [Ni(PrGly)2(H2O)2] (7), and two polymorphs of [Cu(PrGly)2(H2O)2] (8α and 8ß). Compounds were characterized by single-crystal and powder X-ray diffraction, infrared spectroscopy, thermal analysis and X-band electron spin resonance (ESR) spectroscopy. These studies revealed a wide range of structural types including monomeric, dimeric and polymeric architectures, as well as different polymorphs. In all monomeric compounds, except 2α, and in the coordination polymer 5p hydrogen bonds interconnect the molecules into 2D layers with the alkyl chain pointing outward of the layer. In 2α and in the dimeric compound 1d hydrogen bonds link the molecules into 3D structures. 1d with cobalt(iii), and 4 and 7 with nickel(ii) are ESR silent. The ESR spectra of 1, 3 and 6 are characteristic for paramagnetic high-spin cobalt(ii). The ESR spectra of all copper(ii) coordination compounds show that the unpaired copper electron is located in the d x 2-y 2 orbital, being in agreement with the elongated octahedral geometry.

11.
J Am Chem Soc ; 141(49): 19214-19220, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31747754

ABSTRACT

Tetratopic porphyrin-based metal-organic frameworks (MOFs) represent a particularly interesting subclass of zirconium MOFs due to the occurrence of several divergent topologies. Control over the target topology is a demanding task, and reports often show products containing phase contamination. We demonstrate how mechanochemistry can be exploited for controlling the polymorphism in 12-coordinated porphyrinic zirconium MOFs, obtaining pure hexagonal PCN-223 and cubic MOF-525 phases in 20-60 min of milling. The reactions are mainly governed by the milling additives and the zirconium precursor. In situ monitoring by synchrotron powder X-ray diffraction revealed that specific reaction conditions resulted in the formation of MOF-525 as an intermediate, which rapidly converted to PCN-223 upon milling. Electron spin resonance measurements revealed significant differences between the spectra of paramagnetic centers in two polymorphs, showing a potential of polymorphic Zr-MOFs as tunable supports in spintronics applications.

12.
RSC Adv ; 9(38): 21637-21645, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-35518873

ABSTRACT

Ten new compounds of Co, Ni and Cu with glycinamide (HL = glycinamide): [Co(H2O)2(HL)2]Cl2 (1a), [Co(H2O)2(HL)2]Br1.06Cl0.94 (1b), [Co(H2O)2(HL)2]I2 (1c), [Ni(H2O)2(HL)2]Cl2 (2a), [Ni(H2O)2(HL)2]Br0.94Cl1.06 (2b), [Ni(H2O)2(HL)2]I2 (low and room temperature polymorph, 2cLT and 2cRT), [CuCl2(HL)2] (3a), [CuBr1.3Cl0.7(HL)2] (3b) and {[Cu(HL)2]2[Cu2I6]} n (3c), as well as glycinamide hydroiodide (H2LI) and a new polymorph of glycinamide hydrochloride (ß-H2LCl) were prepared and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermal analysis (TG/DTA) and ESR spectroscopy. 1a, 1b, 2a and 2b are isostructural, as well as 1c and 2cRT, while the Cu compounds (3a-c) have entirely different molecular structures. All investigated compounds are mononuclear with exception of the 1D coordination polymer 3c. Compound 3c contains copper ions in the mixed oxidation state Cu(i) and Cu(ii) with interesting magnetic properties. Paramagnetic behaviour was found in 1a, 1b, 3a and 3b. Temperature induced polymorphic transformation was observed in 2c. Compounds 1a and 3a showed moderate antiproliferative activity and selectivity toward the human breast tumor cell line MCF-7.

13.
Beilstein J Org Chem ; 13: 2352-2363, 2017.
Article in English | MEDLINE | ID: mdl-29181115

ABSTRACT

Copper-catalyzed mechanochemical click reactions using Cu(II), Cu(I) and Cu(0) catalysts have been successfully implemented to provide novel 6-phenyl-2-(trifluoromethyl)quinolines with a phenyl-1,2,3-triazole moiety at O-4 of the quinoline core. Milling procedures proved to be significantly more efficient than the corresponding solution reactions, with up to a 15-fold gain in yield. Efficiency of both solution and milling procedures depended on the p-substituent in the azide reactant, resulting in H < Cl < Br < I reactivity bias. Solid-state catalysis using Cu(II) and Cu(I) catalysts entailed the direct involvement of the copper species in the reaction and generation of highly luminescent compounds which hindered in situ monitoring by Raman spectroscopy. However, in situ monitoring of the milling processes was enabled by using Cu(0) catalysts in the form of brass milling media which offered a direct insight into the reaction pathway of mechanochemical CuAAC reactions, indicating that the catalysis is most likely conducted on the surface of milling balls. Electron spin resonance spectroscopy was used to determine the oxidation and spin states of the respective copper catalysts in bulk products obtained by milling procedures.

14.
Chemphyschem ; 18(17): 2397-2408, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28636148

ABSTRACT

Detailed single-crystal electron spin resonance (ESR) analysis of oxalamide complexes with halogen-bridged copper dimers, supported by X-ray, magnetic susceptibility, and powder ESR studies, is reported. Four complexes with two different ligands are synthesized: [CuLA (µ-X)]2 and [CuLV (µ-X)]2 , for which LA =N-(l-alanine methyl ester)-N'-[(2-pyridine-2-yl)methyl]oxalamide and LV =N-(l-valine methyl ester)-N'-[(2-pyridine-2-yl)methyl]oxalamide, for which X=Cl or Br. X-ray analysis shows that the geometry at each copper(II) ion is square pyramidal, whereas two pyramids share one base-to-apex edge with parallel basal planes. The complexes are linked by hydrogen bonds into infinite chains and are further linked into a 3D network. Susceptibility measurements show that the copper centers in the dimers are weakly antiferromagnetically coupled (|J|≈1-2 cm-1 ). From powder ESR spectroscopy, the g values and dx2-y2 orbital as the ground state of the unpaired electron are determined. The complexes show unusual anisotropic splitting and merging of the ESR lines if their single crystals rotate in a magnetic field. The observation of this partially resolved intradimer dipolar splitting enables estimation of the weak interdimer exchange interaction parameter |J'|≈0.001 cm-1 .

15.
Inorg Chem ; 56(11): 6599-6608, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28537382

ABSTRACT

We have applied in situ monitoring of mechanochemical reactions by high-energy synchrotron powder X-ray diffraction to study the role of liquid additives on the mechanochemical synthesis of the archetypal metal-organic framework (MOF) HKUST-1, which was one of the first and is still among the most widely investigated MOF materials to be synthesized by solvent-free procedures. It is shown here how the kinetics and mechanisms of the mechanochemical synthesis of HKUST-1 can be influenced by milling conditions and additives, yielding on occasion two new and previously undetected intermediate phases containing a mononuclear copper core, and that finally rearrange to form the HKUST-1 architecture. On the basis of in situ data, we were able to tune and direct the milling reactions toward the formation of these intermediates, which were isolated and characterized by spectroscopic and structural means and their magnetic properties compared to those of HKUST-1. The results have shown that despite the relatively large breadth of analysis available for such widely investigated materials as HKUST-1, in situ monitoring of milling reactions can help in the detection and isolation of new materials and to establish efficient reaction conditions for the mechanochemical synthesis of porous MOFs.

16.
Dalton Trans ; 44(47): 20626-35, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26564382

ABSTRACT

A heterometallic coordination polymer {[Cu(bpy)3][Mn2(C2O4)3]·H2O}n (1; bpy = 2,2'-bipyridine) was synthesized using a building-block approach and characterized by IR spectroscopy, single-crystal X-ray diffraction, magnetization measurement, and X-band ESR spectroscopy both on a single crystal and a polycrystalline sample. The molecular structure of 1 is made of a three-dimensional (3D) anionic network [Mn2(C2O4)3]n(2n-) and tris-chelated cations [Cu(bpy)3](2+) occupying the vacancies of the framework. In compound 1 magnetic order is confirmed below 12.8 K - magnetization measurements reveal an antiferromagnetic-like network of canted Mn(2+) spins with incorporated paramagnetic Cu(2+) centres. The ESR spectroscopy distinctly shows the phase transition; above T≈ 13 K, single isotropic Lorentzian lines of Mn(2+) ions in the high spin state S = 5/2 were observed, while below this temperature, only characteristic Cu(2+) signals from cations were detected. Thermal decomposition residues of 1 at different temperatures (800-1000 °C) were analyzed by powder X-ray diffraction; by heating the sample up to 1000 °C the spinel oxide CuMn2O4 [94.1(2) wt%] was formed. From the refined structural parameters, it could be seen that the obtained spinel is characterized by the inversion parameter δ∼ 0.8, and therefore the structural formula at room temperature can be written as (tet)[Cu0.17Mn0.83](oct)[Mn1.17Cu0.83]O4.

17.
Dalton Trans ; 43(31): 11877-87, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24965121

ABSTRACT

A set of four copper(ii) complexes, and (X = Cl, Br; = N-(l-leucine methyl ester)-N'-((2-pyridin-2-yl)methyl)oxalamide and = N-benzyl-N'-((2-pyridin-2-yl)methyl)oxalamide), have been synthesized and characterized by X-ray structural analysis, electron paramagnetic resonance (EPR) spectroscopy on single crystals and by SQUID magnetization measurements. X-ray diffraction studies show one-dimensional hydrogen bonded networks of dimeric copper(ii)-complexes bridged by two halide ions and with the two metal centers 3.44-3.69 Šapart. The geometry at each copper(ii) atom is ideal or near ideal square pyramidal. EPR and SQUID studies indicate that all complexes exhibit weak antiferromagnetic interactions between the Cu(ii) paramagnetic centers, with exchange parameter |J| ∼ 1 cm(-1). Magneto-structural comparisons among similar dihalo-bridged Cu(ii) dinuclear complexes are also provided, and a possible correlation has been established.

18.
J Magn Reson ; 207(1): 34-41, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20833090

ABSTRACT

Single crystals of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) obtained from diethyl ether (ether) and carbon disulfide (CS2) were characterized by the X-ray diffraction, IR, EPR and SQUID magnetization techniques. The X-ray structural analysis and IR spectra showed that the DPPH form crystallized from ether (DPPH1) is solvent free, whereas that one obtained from CS2 (DPPH2) is a solvate of the composition 4DPPH·CS2. Principal values of the g-tensor were estimated by the X-band EPR spectroscopy at room and low (10 K) temperatures. Magnetization studies revealed the presence of antiferromagnetically coupled dimers in both types of crystals. However, the way of dimerization as well as the strength of exchange couplings are different in the two DPPH samples, which is in accord with their crystal structures. The obtained results improved parameters accuracy and enabled better understanding of properties of DPPH as a standard sample in the EPR spectrometry.


Subject(s)
Biphenyl Compounds/chemistry , Carbon Disulfide/chemistry , Ether/chemistry , Picrates/chemistry , Algorithms , Crystallization , Crystallography, X-Ray , Electromagnetic Fields , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Solutions , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...