Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 27(20): 4652-4659, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28927794

ABSTRACT

Structure activity relationship (SAR) investigation of an oxadiazole based series led to the discovery of several potent FLAP inhibitors. Lead optimization focused on achieving functional activity while improving physiochemical properties and reducing hERG inhibition. Several compounds with favorable in vitro and in vivo properties were identified that were suitable for advanced profiling.


Subject(s)
5-Lipoxygenase-Activating Protein Inhibitors/chemistry , 5-Lipoxygenase-Activating Proteins/metabolism , Oxadiazoles/chemistry , 5-Lipoxygenase-Activating Protein Inhibitors/metabolism , 5-Lipoxygenase-Activating Proteins/chemistry , Animals , Drug Evaluation, Preclinical , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Half-Life , Humans , Inhibitory Concentration 50 , Male , Microsomes, Liver/metabolism , Oxadiazoles/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Solubility , Structure-Activity Relationship
2.
J Med Chem ; 58(4): 1669-90, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25671290

ABSTRACT

The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production.


Subject(s)
Acetamides/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Drug Discovery , Lipoxygenase Inhibitors/pharmacology , Oxadiazoles/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Models, Molecular , Molecular Conformation , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 25(3): 581-6, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25556092

ABSTRACT

Through a ligand-based pharmacophore model (S)-proline based compounds were identified as potent cannabinoid receptor 2 (CB2) agonists with high selectivity over the cannabinoid receptor 1 (CB1). Structure-activity relationship investigations for this compound class lead to oxo-proline compounds 21 and 22 which combine an impressive CB1 selectivity profile with good pharmacokinetic properties. In a streptozotocin induced diabetic neuropathy model, 22 demonstrated a dose-dependent reversal of mechanical hyperalgesia.


Subject(s)
Isoxazoles/chemistry , Proline/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptor, Cannabinoid, CB2/agonists , Animals , Diabetic Neuropathies/chemically induced , Diabetic Neuropathies/drug therapy , Half-Life , Humans , Isoxazoles/pharmacokinetics , Isoxazoles/therapeutic use , Ligands , Male , Microsomes, Liver/metabolism , Proline/pharmacokinetics , Proline/therapeutic use , Protein Binding , Pyrrolidonecarboxylic Acid/chemistry , Pyrrolidonecarboxylic Acid/pharmacokinetics , Pyrrolidonecarboxylic Acid/therapeutic use , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Solubility , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 25(3): 575-80, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25556098

ABSTRACT

Computer-aided drug design scaffold hopping strategies were utilized to identify new classes of CB2 agonists when compounds of an established series with low nanomolar potency were challenging to optimize for good drug-like properties. Use of ligand-based design strategies through BI Builder (a tool for de novo design) and PharmShape (a virtual screening software package) approaches led to the discovery of new chemotypes. Specifically, compounds containing azetidine-, proline-, and piperidine-based cores were found to have low nanomolar and picomolar CB2 agonist activities with drug-like properties considered appropriate for early profiling.


Subject(s)
Drug Design , Receptor, Cannabinoid, CB2/agonists , Computer-Aided Design , Humans , Ligands , Microsomes, Liver/metabolism , Protein Binding , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Solubility , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 25(3): 587-92, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25575658

ABSTRACT

A novel class of potent cannabinoid receptor 2 (CB2) agonists based on a (S)-piperidine scaffold was identified using ligand-based pharmacophore models. Optimization of solubility and metabolic stability led to the identification of several potent CB2 agonists (e.g., 30) that displayed selectivity over cannabinoid receptor 1 (CB1) and acceptable drug like properties. In rats, compound 30 demonstrated a favorable pharmacokinetic profile and efficacy in a Streptozotocin-induced diabetic neuropathy model, with full reversal of mechanical hyperalgesia.


Subject(s)
Pipecolic Acids/chemistry , Piperidines/chemistry , Receptor, Cannabinoid, CB2/agonists , Thiazines/chemistry , Animals , Diabetic Neuropathies/chemically induced , Diabetic Neuropathies/drug therapy , Half-Life , Humans , Ligands , Male , Microsomes, Liver/metabolism , Pain/drug therapy , Pipecolic Acids/pharmacokinetics , Pipecolic Acids/therapeutic use , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Protein Binding , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Solubility , Structure-Activity Relationship , Thiazines/pharmacokinetics , Thiazines/therapeutic use
6.
Bioorg Med Chem Lett ; 21(14): 4276-80, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21689933

ABSTRACT

A high throughput screening campaign identified aryl 1,4-diazepane compounds as potent and selective cannabinoid receptor 2 agonists as compared to cannabinoid receptor 1. This class of compounds suffered from poor drug-like parameters as well as low microsomal stability and poor solubility. Structure-activity relationships are described with a focus on improving the drug-like parameters resulting in compounds with improved solubility and permeability.


Subject(s)
Azepines/chemistry , Receptor, Cannabinoid, CB2/agonists , Azepines/pharmacology , Caco-2 Cells , Cell Membrane Permeability , High-Throughput Screening Assays , Humans , Microsomes, Liver/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Solubility , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 19(6): 1604-9, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19243942

ABSTRACT

Identification and optimization of two classes of CB2 selective agonists are described. A representative from each class is profiled in a murine model of inflammation and each shows similar efficacy to prednisolone upon oral dosing.


Subject(s)
Morpholines/chemical synthesis , Receptor, Cannabinoid, CB2/agonists , Analgesics/chemical synthesis , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Chemistry, Pharmaceutical/methods , Drug Design , Humans , Inflammation , Mice , Models, Chemical , Molecular Structure , Morpholines/pharmacology , Receptor, Cannabinoid, CB2/chemistry , Stereoisomerism
8.
Bioorg Med Chem Lett ; 19(6): 1588-91, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19246196

ABSTRACT

Benzamide 1 demonstrated good potency as a selective ITK inhibitor, however the amide moiety was found to be hydrolytically labile in vivo, resulting in low oral exposure and the generation of mutagenic aromatic amine metabolites. Replacing the benzamide with a benzylamine linker not only addressed the toxicity issue, but also improved the cellular and functional potency as well as the drug-like properties. SAR studies around the benzylamines and the identification of 10n and 10o as excellent tools for proof-of-concept studies are described.


Subject(s)
Benzimidazoles/chemical synthesis , Chemistry, Pharmaceutical/methods , Enzyme Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Benzimidazoles/pharmacology , CD3 Complex/biosynthesis , Drug Design , Enzyme Inhibitors/pharmacology , Female , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 17(18): 5025-31, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17692519

ABSTRACT

A new series of ligands for the glucocorticoid receptor (GR) is described. SAR development was guided by docking 3 into the GR active site and optimizing an unsubstituted phenyl ring for key interactions found in the steroid A-ring binding pocket. To identify compounds with an improved side effect profile over marketed steroids the functional activity of compounds was evaluated in cell based assays for transactivation (aromatase) and transrepression (IL-6). Through this effort, 36 has been identified as a partial agonist with a dissociated profile in these cell based assays.


Subject(s)
Glucocorticoids/agonists , Ligands , Models, Molecular , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 15(21): 4761-9, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16112571

ABSTRACT

Compound 1, a potent glucocorticoid receptor ligand, contains a quaternary carbon bearing trifluoromethyl and hydroxyl groups. This paper describes the effect of replacing the trifluoromethyl group on binding and agonist activity of the GR ligand 1. The results illustrate that replacing the CF3 group with a cyclohexylmethyl or benzyl group maintains the GR binding potency. These substitutions alter the functional behavior of the GR ligands from agonists to antagonists. Docking studies suggest that the benzyl analog 19 binds in a similar fashion as the GR antagonist, RU486. The central benzyl group of 19 and the C-11 dimethylaniline moiety of RU486 overlay. Binding of compound 19 is believed to force helix 12 to adopt an open conformation and this leads to the antagonist properties of the non-CF3 ligands carrying a large group at the center of the molecule.


Subject(s)
Chlorofluorocarbons, Methane/chemistry , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/antagonists & inhibitors , Cells, Cultured , Chlorofluorocarbons, Methane/pharmacology , Fibroblasts , HeLa Cells , Humans , Interleukin-6/biosynthesis , Interleukin-6/genetics , Ligands , Models, Molecular , Protein Binding , Protein Conformation/drug effects , Receptors, Cytoplasmic and Nuclear/drug effects , Structure-Activity Relationship , Transcription, Genetic/drug effects
12.
J Med Chem ; 45(25): 5471-82, 2002 Dec 05.
Article in English | MEDLINE | ID: mdl-12459015

ABSTRACT

The specificity of the immune response relies on processing of foreign proteins and presentation of antigenic peptides at the cell surface. Inhibition of antigen presentation, and the subsequent activation of T-cells, should, in theory, modulate the immune response. The cysteine protease Cathepsin S performs a fundamental step in antigen presentation and therefore represents an attractive target for inhibition. Herein, we report a series of potent and reversible Cathepsin S inhibitors based on dipeptide nitriles. These inhibitors show nanomolar inhibition of the target enzyme as well as cellular potency in a human B cell line. The first X-ray crystal structure of a reversible inhibitor cocrystallized with Cathepsin S is also reported.


Subject(s)
Cathepsins/chemical synthesis , Dipeptides/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Nitriles/chemical synthesis , B-Lymphocytes/drug effects , Binding, Competitive , Cathepsins/chemistry , Cathepsins/pharmacology , Cell Line , Crystallography, X-Ray , Dipeptides/chemistry , Dipeptides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Models, Molecular , Nitriles/chemistry , Nitriles/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...