Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
J Chromatogr A ; 1734: 465264, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39181094

ABSTRACT

Various sensory perceptions drive the quality and typicality of wines, with the volatile profile playing a fundamental role in the characteristics of odor, aroma and consequently flavor, which combines the smell (odor and aroma), taste, and trigeminal sensations. Efforts have been made in both the field of instrumental and sensory analysis to understand the relationship of volatile compounds with sensory attributes in omics approaches. Gas chromatography (monodimensional and two-dimensional (heartcutting and comprehensive)) associated with mass spectrometry (GC/MS, GC-GC/MS and GCxGC/MS) and chemometric tools have contributed to foodomics analyses, specifically those linked to metabolomics/volatilomics. These tools, along with the elucidation of sensory properties (sensomics), lead to advanced results in the field of flavoromics. They also help to define the best practices in both vineyard management and winemaking that enable the production of high-quality wines. The objective of this review is to report the challenges of determining the volatile profile of wines, pointing out the ways that can be followed in successful identification and quantification of volatile compounds. The state of the art of sensory evaluation methods is also addressed, providing information that helps in choosing the most appropriate sensory method to be conducted with chromatographic analysis to achieve more in-depth results in the field of flavoromics.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Taste , Volatile Organic Compounds , Wine , Wine/analysis , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Humans , Metabolomics/methods
2.
Int J Food Microbiol ; 415: 110644, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38417280

ABSTRACT

Fungal control strategies based on the use of Bacillus have emerged in agriculture as eco-friendly alternatives to replace/reduce the use of synthetic pesticides. Bacillus sp. P1 was reported as a new promising strain for control of Aspergillus carbonarius, a known producer of ochratoxin A, categorized as possible human carcinogen with high nephrotoxic potential. Grape quality can be influenced by vineyard management practices, including the use of fungal control agents. The aim of this study was to evaluate, for the first time, the quality parameters of Chardonnay grapes exposed to an antifungal Bacillus-based strategy for control of A. carbonarius, supporting findings by genomic investigations. Furthermore, genomic tools were used to confirm that the strain P1 belongs to the non-pathogenic species Bacillus velezensis and also to certify its biosafety. The genome of B. velezensis P1 harbors genes that are putatively involved in the production of volatiles and hydrolytic enzymes, which are responsible for releasing the free form of aroma compounds. In addition to promote biocontrol of phytopathogenic fungi and ochratoxins, the treatment with B. velezensis P1 did not change the texture (hardness and firmness), color and pH of the grapes. Heat map and hierarchical clustering analysis (HCA) of volatiles evaluated by GC/MS revealed that Bacillus-treated grapes showed higher levels of compounds with a pleasant odor descriptions such as 3-hydroxy-2-butanone, 2,3-butanediol, 3-methyl-1-butanol, 3,4-dihydro-ß-ionone, ß-ionone, dihydroactinidiolide, linalool oxide, and ß-terpineol. The results of this study indicate that B. velezensis P1 presents desirable properties to be used as a biocontrol agent.


Subject(s)
Aspergillus , Bacillus , Norisoprenoids , Ochratoxins , Vitis , Humans , Vitis/microbiology , Bacillus/genetics , Bacillus/chemistry , Genomics
3.
Int J Food Microbiol ; 389: 110107, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36731201

ABSTRACT

Bacillus-based biocontrol agents have emerged as a strategy to eliminate or reduce the use of synthetic fungicides that are detrimental to health and the environment. In vineyards, a special concern arises from the control of Aspergillus carbonarius, a fungus known for its potential to produce ochratoxins. Ochratoxin A (OTA) is the most toxic form among ochratoxins and its maximum limit in wine has been established in Europe and Brazil as 2 µg/kg. Wine quality, especially the volatile profile, may be influenced by the antifungal strategies, since fungicide residues are transferred from grapes to must during winemaking. The objective of this study was to evaluate, for the first time, the impact of a biocontrol strategy containing Bacillus velezensis P1 on the volatile profile and occurrence of ochratoxins when grapes infected with A. carbonarius were used in winemaking. The evaluation of ochratoxins was carried out by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and volatile compounds were analyzed using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC/qMS). Six ochratoxins were identified in must prepared with Chardonnay grapes inoculated with A. carbonarius (ochratoxin α, ochratoxin ß, ochratoxin α methyl-ester, ochratoxin α amide, N-formyl-ochratoxin α amide and OTA). Although winemaking causes a decrease in the levels of all forms of ochratoxins, the co-occurrence of these mycotoxins was verified in wine made with grapes containing A. carbonarius. B. velezensis P1 prevented the occurrence of ochratoxins in must, ensuring the safety of wines. Regarding the volatile profile, a predominant presence of terpenic compounds was verified in samples treated with B. velezensis when compared with those not treated with the biocontrol strategy, whereas the presence of A. carbonarius resulted in a higher concentration of volatile compounds with an odor described as fatty/waxy, possibly compromising wine quality. Therefore, B. velezensis P1 is a new biofungicide possibility to produce ochratoxin-free grapes and high-quality wines.


Subject(s)
Ochratoxins , Vitis , Wine , Vitis/microbiology , Food Contamination/prevention & control , Food Contamination/analysis , Wine/microbiology , Ochratoxins/analysis , Europe , Chromatography, Liquid
4.
Chem Biodivers ; 19(12): e202200541, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36259377

ABSTRACT

Schinus essential oils were tentatively identified by GC×GC/TOFMS, which revealed a greater number of compounds than previously reported. Eighty-six, seventy-two, and eighty-eight components were identified in Schinus lentiscifolius, Schinus molle and Schinus terebinthifolius essential oils, respectively. Compound separation due to 2 D selectivity was observed. Phytotoxic effects of Schinus essential oils were assessed on germination and initial growth of Arabidopsis thaliana. All essential oils in all tested quantities (5 µL, 10 µL, 15 µL, 20 µL, and 25 µL) affected germination rate, speed of accumulated germination, and root and shoot length of A. thaliana. Considering the mode of action of the essential oils, no differences were observed on expression of the genes ANP1 and CDK B1;1 in A. thaliana, which was analyzed by RT-qPCR. Results suggest that phytotoxic effects of Schinus essential oils seem to be explained by cellular damage rather than by induction of stress-inducible genes.


Subject(s)
Alkaloids , Anacardiaceae , Arabidopsis , Oils, Volatile , Oils, Volatile/toxicity , Oils, Volatile/chemistry , Schinus , Anacardiaceae/chemistry
5.
Food Chem ; 370: 131004, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34525425

ABSTRACT

A step-by-step approach to easily adapt and use a GC-FID as an olfactometer, as well as a detailed description of acquisition and interpretation of olfactometric data by the OSME (from the Greek word for odor, ὀσµÎ®) method. A Merlot wine was used to exemplifly this strategy and its volatiles were characterized, rendering 43 volatiles in 1D-GC/MS and 142 in GCxGC/MS. GC-O showed the presence of 24 odor-active compounds and GCxGC/MS indicated aditional 14 odor-active compounds, which were found as coelutions. Six compounds (isoamyl acetate, ethyl octanoate, ethyl decanoate, 3-methylthio-1-propanol, carvone, benzyl alcohol and nonanoic acid) were described in 1D-GC-O analyses as having distinct odors by the same and by different assessors. This fact indicated the presence of coeluting bands, which were resolved by GCxGC/MS. The adapted GC-O in combination with the use of GCxGC/MS may be a tool to more accurate investigation of the odor-active compounds of wine.


Subject(s)
Volatile Organic Compounds , Wine , Chromatography, Gas , Odorants/analysis , Olfactometry , Volatile Organic Compounds/analysis , Wine/analysis
6.
Food Res Int ; 141: 110145, 2021 03.
Article in English | MEDLINE | ID: mdl-33642011

ABSTRACT

Dehydration of grapes has been used in various regions of the world to produce special wines, aiming to add value to oenological products. Post-harvest dehydration in rooms may be carried out regardless of weather conditions, without the additional cost of a specific infrastructure, in addition to the benefits of protecting the grapes from damages and environmental pollution. The objective of this study was to verify, for the first time, the impact of the dehydration in a naturally ventilated room on the quality of Merlot grapes. Physicochemical characteristics, mycobiota, occurrence of mycotoxins, volatile profile and phenolic composition of grapes were monitored on 7th, 14th and 21st days of dehydration (weight loss of 10, 20 and 27%, respectively). A decrease in aw (6%), pH (4%), and berry hardness (58%), along with an increase in total soluble solid content (15%) were observed during dehydration. The presence of Pestalotiopsis clavispora, Neopestalotiopsis clavispora, Colletotrichum siamense and Alternaria porri was favored during the dehydration process, while a decrease in the occurrence of Aspergillus niger and Phanerochaete sp. was verified. A. niger isolates showed no potential to produce forms of ochratoxins. These toxins were also not found in the grape samples. Regarding the volatile profile, 1-hexanal, 2-hexenal, and 1-octanal gave rise to the corresponding alcohols during dehydration, such as 1-hexanol, 2-hexen-1-ol, and 1-octanol. Acids (hexanoic, decanoic, and 3-hexenoic) resulted in the respective ethyl esters (hexanoate, decanoate, and ethyl 3-hexenoate) during dehydration. Terpenes as limonene, myrcene, and geraniol decreased throughout dehydration, while their biotransformation products (α-terpineol, 6-methyl-5-hepten-2-one, and linalool, respectively) had an increase in concentration. The phenolic content oscillated during dehydration, with an emphasis on increased levels of four hydroxybenzoic acids (ethyl gallate, p-hydroxybenzoic acid, gallic acid-hexose, and gallic acid), two hydroxycinnamic acids (caffeic acid and caftaric acid), two flavonols (kaempeferol galactoside and quercetin) and two anthocyanins (peonidin 3-O-hexoside and delphinidin 3-O-hexoside). Grapes of satisfactory quality were produced by dehydration in a naturally ventilated room. Even small wine producers can be encouraged to implement this procedure for the diversification of oenological products, as it has no costs related to the implementation of chambers/tunnels.


Subject(s)
Ochratoxins , Vitis , Wine , Alternaria , Ascomycota , Colletotrichum , Dehydration , Ochratoxins/analysis , Wine/analysis
7.
J Sep Sci ; 44(1): 135-168, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33245848

ABSTRACT

The human nose has been used as a detector in gas chromatography analysis to evaluate odoriferous compounds related to aroma and quality of wine. Several olfactometric techniques are available to access the description, intensity, and/or duration of the odor of each compound. Olfactometry can be associated with one-dimensional gas chromatography or multidimensional gas chromatography, including heart-cut gas chromatography and comprehensive two-dimensional gas chromatography. Multidimensional gas chromatography may help to resolve coeluted compounds and detect important trace components for the aroma. The identification of odor-active compounds may help to differentiate wines according to terroir, grapes cultivars used in winemaking or types of aging, understand the role of fungal infection of grapes for wine quality, find the best management practices in vineyard and vinification to obtain the greatest quality. In addition, when the instrumental techniques are combined with sensory analysis, even more accurate information may be obtained regarding the overall wine aroma. This review discloses the state of the art of olfactometric methods and the analytical techniques used to investigate odor-active compounds such as one-dimensional gas chromatography, multidimensional gas chromatography, and comprehensive two-dimensional gas chromatography. The advances in knowledge of wine aroma achieved with the use of these techniques in the target and profiling approaches were also discussed.


Subject(s)
Odorants/analysis , Olfactometry , Wine/analysis , Chromatography, Gas , Humans
8.
Food Res Int ; 126: 108687, 2019 12.
Article in English | MEDLINE | ID: mdl-31732020

ABSTRACT

Aspergillus carbonarius can produce a possibly carcinogenic mycotoxin named ochratoxin A (OTA). The metabolism of this fungus can also impact grape and wine quality as it influences the volatile and phenolic profiles, which are related to aroma and antioxidant activity, respectively. The objective of this study was to evaluate the effect of A. carbonarius on OTA levels and for the first time on volatile profile and antioxidant activity of grapes and their respective wines. Cabernet Sauvignon (CS, red) grapes presented higher susceptibility to A. carbonarius than Moscato Italico (MI, white) grapes and OTA levels in their respective musts were in accordance with this same trend. However, vinification of red grapes resulted in 67% reduction of OTA, while the reduction observed with white wines was 45%. The presence of acids (hexanoic, octanoic, nonanoic and decanoic, fatty odor) was found to be an indicative of the fungus incidence in grapes. These acids were precursors of esters that might impart negative aroma (methyl nonanoate and isoamyl octanoate, fatty odor) or provide desirable fruity characteristics (ethyl hexanoate, ethyl octanoate and methyl octanoate) for wine. In addition, terpenes were detected only in wines produced with grapes (CS and MI) inoculated with A. carbonarius. The presence of A. carbonarius increased the antioxidant activity of CS grapes. For MI grapes and both wines (CS and MI) no differences were verified in the antioxidant activity of the samples affected or not affected by this fungus. Although A. carbonarius occurrence has shown no influence on the antioxidant activity of wines, it produced OTA and has negatively influenced the wine odor profile, due to the production of some volatiles that impart a deleterious effect on wine aroma.


Subject(s)
Antioxidants/analysis , Aspergillus/metabolism , Ochratoxins/analysis , Vitis , Wine , Antioxidants/metabolism , Ochratoxins/metabolism , Odorants , Vitis/chemistry , Vitis/microbiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Wine/analysis , Wine/microbiology
9.
Ciênc. rural (Online) ; 49(3): e20180986, 2019. tab
Article in English | LILACS | ID: biblio-1045316

ABSTRACT

ABSTRACT: The goals of this study were to verify the occurrence of furfuryl alcohol (FA) and carbonyl compounds (acetaldehyde, acrolein, ethyl carbamate (EC), formaldehyde and furfural) in sparkling wines and to evaluate, for the first time, whether the consumption of the samples under study could represent risk to consumers health. These compounds are electrophilic; and therefore, may covalently bind to DNA, which may result in mutagenicity. EC and formaldehyde were present at low levels (<1μg L-1) in all samples. Acetaldehyde, furfural and acrolein were also found in low levels (<1.5, 1.4 and 1.0μg L-1, respectively) in 57, 71 and 76% of samples. In the other samples, levels of acetaldehyde, furfural and acrolein ranged from 5.2 to 54.8, 10.5 to 41.0 and 20.3 to 36.7μg L-1, respectively. Furfuryl alcohol was also reported in all samples in levels from 10.4 to 33.5μg L-1. Acrolein was the only compound reported at levels sufficient to represent risk to health, which occurred in 24% of the samples. A study focused on the origin of acrolein deserves attention, investigating the influence of the concentration of precursors and the role of fermentation in the formation of this aldehyde, besides the evaluation of possible environmental contamination of grapes during cultivation.


RESUMO: Os objetivos deste estudo foram verificar a ocorrência de álcool furfurílico (FA) e compostos carbonílicos (acetaldeído, acroleína, carbamato de etila (CE), formaldeído e furfural) em espumantes e avaliar, pela primeira vez, se o consumo das amostras em estudo poderia representar risco para a saúde do consumidor. Esses compostos são eletrofílicos e, portanto, podem se ligar covalentemente ao DNA, o que pode resultar em mutagenicidade. CE e formaldeído foram encontrados em baixos níveis (<1μg/L) em todas as amostras. Acetaldeído, furfural e acroleína também foram encontrados em baixos níveis (<1,5; 1,4 e 1,0μg L-1, respectivamente) em 57, 71 e 76% das amostras. Nas demais amostras, os níveis de acetaldeído, furfural e acroleína variaram de 5,2 a 54,8, 10,5 a 41,0 e 20,3 a 36,7μg L-1, respectivamente. O álcool furfurílico também foi encontrado em todas as amostras em níveis de 10,4 a 33,5μg L-1. A acroleína foi o único composto encontrado em níveis suficientes para representar risco à saúde, que ocorreu em 24% das amostras. Uma avaliação focada na origem da acroleína merece atenção, investigando a influência da concentração dos precursores e o papel da fermentação na formação do aldeído, além da avaliação da possível contaminação ambiental das uvas durante o cultivo.

10.
Article in English | MEDLINE | ID: mdl-30427283

ABSTRACT

The objective of this research was to estimate for the first time the transformations that the free form of some target carbonyl compounds may undergo during winemaking and assess the exposure risk to these compounds through the consumption of the Merlot commercial wines under study. Acrolein and furfural were found in grapes and the respective wines, although levels were observed to decline throughout the winemaking process. Formaldehyde was found in all stages of wine production in levels lower than the limit of quantification of the method and ethyl carbamate was not found in samples. Acetaldehyde seems to be a precursor of acetoin and 2,3-butanediol, since the levels of this aldehyde decreased along winemaking and the formation of the ester and alcohol was verified. Furfural levels decreased, while the occurrence of furan-containing compounds increased during winemaking. The formation of acetaldehyde during alcoholic fermentation and the potential environmental contamination of grapes with acrolein and furfural are considered as the critical points related to the presence of toxic carbonyl compounds in the wine. Acrolein was found in the samples under study in sufficient quantities to present risk to human health, while other potentially toxic carbonyl compounds did not result in risk. This study indicated for the first time the presence of acrolein in grapes suggesting that environmental pollution can play an important role in the levels of this aldehyde detected in wines. Reduction of the emission of this aldehyde to the environment may be achieved by replacing wood burning by another heat source in fireplaces or wood stones, and abandoning the practice of burning garbage and vegetation.


Subject(s)
Acetaldehyde/administration & dosage , Acetaldehyde/analysis , Acrolein/administration & dosage , Acrolein/analysis , Drinking , Furaldehyde/administration & dosage , Furaldehyde/analysis , Wine/analysis , Fermentation , Humans , Risk Assessment , Vitis/chemistry
11.
Front Plant Sci ; 9: 1521, 2018.
Article in English | MEDLINE | ID: mdl-30459785

ABSTRACT

Thysanoptera-induced galls commonly culminate in simple folding or rolling leaf gall morphotypes. Most of these galls are induced by members of the suborder Tubulifera, with only a few species of the suborder Terebrantia being reported as gall inducers. The Terebrantia, as most of the gall inducers, manipulates the host plant cellular communication system, and induces anatomical and biochemical changes in its host plant. In an effort to keep its homeostasis, the host plant reacts to the stimuli of the galling insect and triggers chemical signaling processes. In contrast to free-living herbivores, the signaling processes involving galling herbivores and their host plants are practically unknown. Current investigation was performed into two steps: first, we set the structural profile of non-galled and galled leaves, and looked forward to find potential alterations due to gall induction by an undescribed species of Nexothrips (suborder Terebrantia) on Myrcia splendens. Once oil glands had been altered in size and number, the second step was the investigation of the chemical profile of three tissue samples: (1) non-galled leaves of a control individual, (2) non-galled leaves of galled plants, and (3) galls. This third sample was divided into two groups: (3.1) galls from which the inducing thrips were manually removed and (3.2) galls macerated with the inducing thrips inside. The chemical profile was performed by gas chromatography/ mass spectrometric detector after headspace solid-phase extraction. The galling activity of the Nexothrips sp. on M. splendens culminates in mesophyll compactness interspersed to diminutive hypersensitive spots, development of air cavities, and the increase in size and number of the secretory glands. Seventy-two compounds were completely identified in the volatile profile of the three samples, from which, sesquiterpenes and aldehydes, pertaining to the "green leaf volatile" (GLVs) class, are the most abundant. The rare event of gall induction by a Terebrantia revealed discrete alterations toward leaf rolling, and indicated quantitative differences related to the plant bioactivity manipulated by the galling thrips. Also, the content of methyl salicylate has varied and has been considered a potential biomarker of plant resistance stimulated as a long-distance effect on M. splendens individuals.

12.
Food Chem ; 230: 594-603, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28407955

ABSTRACT

The validated method based on the use of headspace solid phase microextraction (HS-SPME) coupled with the comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC×GC/TOFMS) proved to be appropriate for this first simultaneous quantitative determination of six toxic compounds (formaldehyde, acetaldehyde, ethyl carbamate, furan, furfural and acrolein) found in wines. Acetaldehyde and acrolein coeluted with other wine compounds, which indicated that difficulties could arise if only one-dimensional gas chromatography was used for the determination of these compounds. The advancement of the ripeness degree and increasing the grape maceration time seems to result in higher concentrations of toxic compounds. The exposure to furan, acrolein and ethyl carbamate through wine consumption may pose risks to consumer health, since calculated MOE values were lower than 10,000.


Subject(s)
Chromatography, Gas/methods , Furans/chemistry , Iron Carbonyl Compounds/chemistry , Vitis/chemistry , Wine/analysis
13.
Pharm Biol ; 54(12): 3272-3279, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27590861

ABSTRACT

CONTEXT: Baccharis psiadioides (Less.) Joch. Müller (Asteraceae) is considered as a producer of bioactive essential oils and is used in south Brazilian folk medicine for its proprieties as stimulant, antipyretic, anti-inflammatory and as an antidote for snake bites. OBJECTIVE: To verify the antimicrobial and antibiofilm activities of the essential oil of B. psiadioides (EOBP) against antibiotic-resistant Enterococcus faecalis. MATERIALS AND METHODS: The initial evaluation of EOBP activity was conducted by the agar and microdilution methods against 13 antibiotic-resistant E. faecalis strains. The antibiofilm effect was determined by the application of EOBP in the earlier adherent cells or to the stabilized biofilm for 24 h and was evaluated by crystal violet, viability and scanning electron microscopy (SEM) assays. Chemical composition of EOBP was determined by gas chromatography (GC/FID - GC/MS). RESULTS: The MIC values for EOBP were at least 1.25% and 4-16% for agar and microdilution assays, respectively. The EOBP reduced the microbial adherence and the viability of the cells, but did not cause the complete disruption of biofilms. SEM images indicate that EOBP influences the adherence of cells to a surface. The monoterpene ß-pinene was the major constituent identified in EOBP. CONCLUSION: This research shows the ability of EOBP to control resistant E. faecalis strains and to reduce the biofilm amount attached to abiotic surfaces, indicating its role as a promising new natural antimicrobial agent. Moreover, these results further contribute to the growing number of studies of plant natural products which suggest that these compounds can combat resistant microorganisms.


Subject(s)
Anti-Infective Agents/pharmacology , Baccharis , Biofilms/drug effects , Drug Resistance, Bacterial/drug effects , Enterococcus faecalis/drug effects , Oils, Volatile/pharmacology , Anti-Infective Agents/isolation & purification , Biofilms/growth & development , Drug Resistance, Bacterial/physiology , Enterococcus faecalis/growth & development , Humans , Oils, Volatile/isolation & purification , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Leaves
14.
Anal Chem ; 88(20): 10028-10035, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27640611

ABSTRACT

As columns age and differ between systems, retention times for comprehensive two-dimensional gas chromatography (GCxGC) may vary between runs. To properly analyze GCxGC chromatograms, it often is desirable to align the retention times of chromatographic features, such as analyte peaks, between chromatograms. Previous work by the authors has shown that global, low-degree polynomial transformation functions, namely affine, second-degree polynomial, and third-degree polynomial, are effective for aligning pairs of two-dimensional chromatograms acquired with dual second columns and detectors (GC×2GC). This work assesses the experimental performance of these global methods on more general GCxGC chromatogram pairs and compares their performance to that of a recent, robust, local alignment algorithm for GCxGC data [ Gros Anal. Chem. 2012 , 84 , 9033 ]. Measuring performance with the root-mean-square (RMS) residual differences in retention times for matched peaks suggests that global, low-degree polynomial transformations outperform the local algorithm given a sufficiently large set of alignment points, and are able to improve misalignment by over 95% based on a lower-bound benchmark of inherent variability. However, with small sets of alignment points, the local method demonstrated lower error rates (although with greater computational overhead). For GCxGC chromatogram pairs with only slight initial misalignment, none of the global or local methods performed well. In some cases with initial misalignment near the inherent variability of the system, these methods worsened alignment, suggesting that it may be better not to perform alignment in such cases.

15.
J Chromatogr A ; 1439: 144-151, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26718184

ABSTRACT

The present research is based on the development and use of a flow-modulation (FM) comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) method for the determination of recently-highlighted (by the Scientific Committee on Consumer Safety) fragrance allergens (54) in cosmetics. FM GC×GC-qMS conditions were finely tuned to generate flow conditions (≈7 mL min(-1)) compatible with the qMS system used. Six-point calibration curves, over the range 1, 5, 10, 20, 50, 100 mg L(-1), were constructed for the 54 target allergens, with satisfactory linearity observed in all cases. Absolute quantification was performed by using extracted ions; target analyte identification was performed through measurement of ion ratios (qualifier/quantifier), full-scan MS database matching and the use of linear retention indices. Additional analytical figures of merit subjected to measurement were intra-day repeatability, accuracy at the 25 and 5 mg L(-1) levels, and limits of detection and quantification. The number of data points per peak, along with mass spectral skewing, was also subjected to evaluation. Finally, the FM GC×GC-qMS method was used not only for the quantification of target allergens in five commercial perfumes, but also for general qualitative profiling.


Subject(s)
Allergens/analysis , Perfume/analysis , Calibration , Gas Chromatography-Mass Spectrometry/methods , Ions
16.
Bioresour Technol ; 200: 680-90, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26556402

ABSTRACT

Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production.


Subject(s)
Biofuels , Forests , Gas Chromatography-Mass Spectrometry/methods , Industry , Oils/chemistry , Wood/chemistry , Biomass , Eucalyptus/chemistry , Pinus/chemistry , Temperature
17.
Food Chem ; 183: 291-304, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25863638

ABSTRACT

This study reports, for the first time, the main changes that occur with some important aroma compounds of Moscatel sparkling wines during winemaking, measured using headspace solid-phase microextraction, one-dimensional and comprehensive two-dimensional gas chromatography (GC×GC) with mass spectrometry detection (MS). The best conditions of volatile extraction included the use of PDMS/DVB fibre, 2mL of wine, 30% of NaCl, 40°C for 30min. The chromatographic profile of sparkling wines showed decreasing amounts of monoterpenes (limonene, 4-terpineol, terpinolene, citronellol, α-terpineol, linalool, hotrienol, and nerol oxide), increasing amounts of esters (terpenyl esters, ethyl octanoate, ethyl decanoate and hexyl acetate) and alcohols (1-nonanol and 2-phenylethanol). Sixty-nine compounds co-eluted in the first dimension; only six co-eluted in the second dimension. GC×GC/TOFMS allows more detailed study of the volatile profile of sparkling wines.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Wine/analysis
18.
Microbiol Res ; 173: 59-65, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25801972

ABSTRACT

Zygosaccharomyces bailii BCV 08, a yeast isolated from red wine barrels in Brazil, was evaluated as co-starter in fermentations with Saccharomyces cerevisiae. Z. bailii BCV 08 was preliminarily shown to produce high levels of esters, and the production was optimized in bench and bioreactor scales using grape must. White wine vinifications were conducted with mixed cultures containing different proportions of Z. bailii BCV 08 and an enological strain of S. cerevisiae. In all trials that contained Z. bailii BCV 08, the production of ethyl esters was enhanced in comparison to the vinification control. Our results clearly show the potential of Z. bailii BCV 08 as a mixed starter with S. cerevisiae in order to increase the aromatic complexity of wine.


Subject(s)
Esters/metabolism , Saccharomyces cerevisiae/metabolism , Vitis/microbiology , Wine/analysis , Zygosaccharomyces/metabolism , Brazil , Esters/analysis , Fermentation , Food Microbiology , Wine/microbiology
19.
J Chromatogr A ; 1387: 86-94, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25704775

ABSTRACT

The present research is focused on the development of a flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry (FM GC × GC-MS/MS) method for the determination of classes of aromatic organic sulphur compounds (benzothiophenes, dibenzothiophenes, and benzonaphthothiophene) in heavy gas oil (HGO). The MS/MS instrument was used to provide both full-scan and multiple-reaction-monitoring (MRM) data. Linear retention index (LRI) ranges were used to define the MRM windows for each chemical class. Calibration solutions (internal standard: 1-fluoronaphthalene) were prepared by using an HGO sample, depleted of S compounds. Calibration information was also derived for the thiophene class (along with MRM and LRI data), even though such constituents were not present in the HGO. Linearity was satisfactory over the analyzed concentration range (1-100 mg/L); intra-day precision for the lowest calibration point was always below 17%. Accuracy was also satisfactory, with a maximum percentage error of 3.5% (absolute value) found among the S classes subjected to (semi-)quantification. The highest limit of quantification was calculated to be 299 µg/L (for the C1-benzothiophene class), while the lowest was 21 µg/L (for the C4-benzothiophene class).


Subject(s)
Chemistry Techniques, Analytical/methods , Gas Chromatography-Mass Spectrometry , Oils/chemistry , Sulfur Compounds/analysis
20.
Food Chem ; 164: 427-37, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24996354

ABSTRACT

The main changes in the volatile profile of base wines and their corresponding sparkling wines produced by traditional method were evaluated and investigated for the first time using headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection (GC×GC/TOFMS) and chemometric tools. Fisher ratios helped to find the 119 analytes that were responsible for the main differences between base and sparkling wines and principal component analysis explained 93.1% of the total variance related to the selected 78 compounds. It was also possible to observe five subclusters in base wines and four subclusters in sparkling wines samples through hierarchical cluster analysis, which seemed to have an organised distribution according to the regions where the wines came from. Twenty of the most important volatile compounds co-eluted with other components and separation of some of them was possible due to GC×GC/TOFMS performance.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Wine/analysis , Cluster Analysis , Principal Component Analysis , Wine/classification , Wine/standards
SELECTION OF CITATIONS
SEARCH DETAIL