Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 20(1): 7, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611185

ABSTRACT

BACKGROUND: Promotion of myelin repair in the context of demyelinating diseases such as multiple sclerosis (MS) still represents a clinical unmet need, given that this disease is not only characterized by autoimmune activities but also by impaired regeneration processes. Hence, this relates to replacement of lost oligodendrocytes and myelin sheaths-the primary targets of autoimmune attacks. Endogenous remyelination is mainly mediated via activation and differentiation of resident oligodendroglial precursor cells (OPCs), whereas its efficiency remains limited and declines with disease progression and aging. Teriflunomide has been approved as a first-line treatment for relapsing remitting MS. Beyond its role in acting via inhibition of de novo pyrimidine synthesis leading to a cytostatic effect on proliferating lymphocyte subsets, this study aims to uncover its potential to foster myelin repair. METHODS: Within the cuprizone mediated de-/remyelination model teriflunomide dependent effects on oligodendroglial homeostasis and maturation, related to cellular processes important for myelin repair were analyzed in vivo. Teriflunomide administration was performed either as pulse or continuously and markers specific for oligodendroglial maturation and mitochondrial integrity were examined by means of gene expression and immunohistochemical analyses. In addition, axon myelination was determined using electron microscopy. RESULTS: Both pulse and constant teriflunomide treatment efficiently boosted myelin repair activities in this model, leading to accelerated generation of oligodendrocytes and restoration of myelin sheaths. Moreover, teriflunomide restored mitochondrial integrity within oligodendroglial cells. CONCLUSIONS: The link between de novo pyrimidine synthesis inhibition, oligodendroglial rescue, and maintenance of mitochondrial homeostasis appears as a key for successful myelin repair and hence for protection of axons from degeneration.


Subject(s)
Myelin Sheath , Oligodendroglia , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Crotonates/pharmacology , Crotonates/therapeutic use , Hydroxybutyrates/metabolism , Hydroxybutyrates/pharmacology , Cell Differentiation
2.
Stem Cell Res ; 67: 103030, 2023 03.
Article in English | MEDLINE | ID: mdl-36669241

ABSTRACT

We generated two pairs of mother-child iPSCs lines for Maternally Inherited Leigh Syndrome (MILS) carrying the m.8993 T > G and m.9176 T > G mutations in the MT-ATP6 gene. We delivered reprogramming factors OCT4, SOX2, KLF4, and c-MYC via Sendai virus. All iPSCs lines had a normal karyotype, expressed pluripotency markers, and differentiated into the three germ layers. Both patient-iPSCs retained the same degrees of heteroplasmy as their source fibroblasts (>97.0 %). In maternal iPSCs, the heteroplasmy remained 0.0 % in the case of the m.8993 T > G mutation and dropped from 55.0 % to 1.0 % in the case of m.9176 T > G mutation.


Subject(s)
Induced Pluripotent Stem Cells , Leigh Disease , Humans , Leigh Disease/genetics , Mutation , Mother-Child Relations , Cell Differentiation , Mitochondrial Proton-Translocating ATPases/genetics
3.
Mol Biol Evol ; 39(10)2022 10 07.
Article in English | MEDLINE | ID: mdl-36205081

ABSTRACT

Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.


Subject(s)
DNA Transposable Elements , RNA, Long Noncoding , Animals , Cell Nucleus/genetics , Histones/metabolism , Humans , Mammals/genetics , Mammals/metabolism , Nerve Tissue Proteins , Paraspeckles , RNA, Long Noncoding/metabolism , Transposases/genetics , Transposases/metabolism
4.
Stem Cell Res ; 64: 102920, 2022 10.
Article in English | MEDLINE | ID: mdl-36137325

ABSTRACT

We used a non-integrative self-replicating RNA vector to establish four iPSC lines: two iPSC lines from a young male carrying the mutation m.9185 T>C in the mitochondrial gene MT-ATP6 (present at virtual homoplasmic level), and two iPSC lines from his healthy mother (carrying the mutation in only about 4 % of mtDNA copies). All iPSC lines exhibited pluripotency characteristics, were capable to give rise to cells of the three germ layers in vitro, and presented a normal karyotype. The derived iPSC lines retained the MT-ATP6 mutation at levels similar to those observed in the parental fibroblasts.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Female , Male , Genes, Mitochondrial , RNA , Mothers , DNA, Mitochondrial/genetics , Mutation/genetics , Mitochondrial Proton-Translocating ATPases/genetics
5.
STAR Protoc ; 3(3): 101602, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35959496

ABSTRACT

We present a high-content screening (HCS) protocol for quantifying mitochondrial activity in live neural cells from human induced pluripotent stem cells (iPSCs). The assessment is based on mitochondrial membrane potential, which is influenced by the efficiency of mitochondrial bioenergetics. We describe how to perform the analysis using both an HCS platform and the open-source software CellProfiler. The protocol can identify the mitochondrial fitness of human neurons and may be used to carry out high-throughput compound screenings in patient-derived neural cells. For complete details on the use and execution of this protocol, please refer to Lorenz et al. (2017) and Zink et al. (2020).


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , High-Throughput Screening Assays/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Mitochondria/physiology , Neurons , Pluripotent Stem Cells/metabolism
6.
STAR Protoc ; 3(3): 101567, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35990743

ABSTRACT

We present a high-content analysis (HCA) protocol for monitoring the outgrowth capacity of human neurons derived from induced pluripotent stem cells (iPSCs). We describe steps to perform HCA imaging, followed by quantifying the morphology of dendrites and axons within a high-throughput system to evaluate neurons obtained through various differentiation approaches. This protocol can be used to screen for modulators of neuronal morphogenesis or neurotoxicity. The approach can be applied to patient-derived iPSCs to identify patient-specific defects and possible therapeutic strategies. For complete details on the use and execution of this protocol, please refer to Zink et al. (2020) and Inak et al. (2021). The protocol can be used in combination with Zink et al. (2022).


Subject(s)
Induced Pluripotent Stem Cells , Neurotoxicity Syndromes , Cell Differentiation/physiology , Humans , Neurons
7.
Stem Cell Res ; 61: 102742, 2022 05.
Article in English | MEDLINE | ID: mdl-35279592

ABSTRACT

We report the generation of four human iPSC lines (8993-A12, 8993-B12, 8993-C11, and 8993-D7) from fibroblasts of four patients affected by maternally inherited Leigh syndrome (MILS) carrying homoplasmic mutations m.8993T > G or m.8993T > C in the mitochondrial gene MT-ATP6. We used Sendai viruses to deliver reprogramming factors OCT4, SOX2, KLF4, and c-MYC. The established iPSC lines expressed pluripotency markers, exhibited a normal karyotype, were capable to form cells of the three germ layers in vitro, and retained the MT-ATP6 mutations at the same homoplasmic level of the parental fibroblasts.


Subject(s)
Induced Pluripotent Stem Cells , Leigh Disease , Fibroblasts , Genes, Mitochondrial , Humans , Leigh Disease/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Mutation/genetics
8.
Front Cell Neurosci ; 15: 777542, 2021.
Article in English | MEDLINE | ID: mdl-34887730

ABSTRACT

Myelin repair in the adult central nervous system (CNS) is driven by successful differentiation of resident oligodendroglial precursor cells (OPCs) and thus constitutes a neurodegenerative process capable to compensate for functional deficits upon loss of oligodendrocytes and myelin sheaths as it is observed in multiple sclerosis (MS). The human endogenous retrovirus type W (HERV-W) represents an MS-specific pathogenic entity, and its envelope (ENV) protein was previously identified as a negative regulator of OPC maturation-hence, it is of relevance in the context of diminished myelin repair. We here focused on the activity of the ENV protein and investigated how it can be neutralized for improved remyelination. ENV-mediated activation of toll like receptor 4 (TLR4) increases inducible nitric oxide synthase (iNOS) expression, prompts nitrosative stress, and results in myelin-associated deficits, such as decreased levels of oligodendroglial maturation marker expression and morphological alterations. The intervention of TLR4 surface expression represents a potential means to rescue such ENV-dependent deficits. To this end, the rescue capacity of specific substances, either modulating V-ATPase activity or myeloid differentiation 2 (MD2)-mediated TLR4 glycosylation status, such as compound 20 (C20), L48H437, or folimycin, was analyzed, as these processes were demonstrated to be relevant for TLR4 surface expression. We found that pharmacological treatment can rescue the maturation arrest of oligodendroglial cells and their myelination capacity and can prevent iNOS induction in the presence of the ENV protein. In addition, downregulation of TLR4 surface expression was observed. Furthermore, mitochondrial integrity crucial for oligodendroglial cell differentiation was affected in the presence of ENV and ameliorated upon pharmacological treatment. Our study, therefore, provides novel insights into possible means to overcome myelination deficits associated with HERV-W ENV-mediated myelin deficits.

9.
Stem Cells ; 39(10): 1289-1297, 2021 10.
Article in English | MEDLINE | ID: mdl-34089537

ABSTRACT

Mitochondria are organelles with recognized key roles in cellular homeostasis, including bioenergetics, redox, calcium signaling, and cell death. Mitochondria are essential for neuronal function, given the high energy demands of the human brain. Consequently, mitochondrial diseases affecting oxidative phosphorylation (OXPHOS) commonly exhibit neurological impairment. Emerging evidence suggests that mitochondria are important not only for mature postmitotic neurons but also for the regulation of neural progenitor cells (NPCs) during the process of neurogenesis. These recent findings put mitochondria as central regulator of cell fate decisions during brain development. OXPHOS mutations may disrupt the function of NPCs and thereby impair the metabolic programming required for neural fate commitment. Promoting the mitochondrial function of NPCs could therefore represent a novel interventional approach against incurable mitochondrial diseases.


Subject(s)
Mitochondrial Diseases , Neural Stem Cells , Humans , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Neural Stem Cells/metabolism , Neurogenesis/genetics , Oxidative Phosphorylation
10.
Bio Protoc ; 11(5): e3939, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33796613

ABSTRACT

The high attrition rate in drug development processes calls for additional human-based model systems. However, in the context of brain disorders, sampling live neuronal cells for compound testing is not applicable. The use of human induced pluripotent stem cells (iPSCs) has revolutionized the field of neuronal disease modeling and drug discovery. Thanks to the development of iPSC-based neuronal differentiation protocols, including tridimensional cerebral organoids, it is now possible to molecularly dissect human neuronal development and human brain disease pathogenesis in a dish. These approaches may allow dissecting patient-specific treatment efficacy in a disease-relevant cellular context. For drug discovery approaches, however, a highly reproducible and cost-effective cell model is desirable. Here, we describe a step-by-step process for generating robust and expandable neural progenitor cells (NPCs) from human iPSCs. NPCs generated with this protocol are homogeneous and highly proliferative. These features make NPCs suitable for the development of high-throughput compound screenings for drug discovery. Human iPSC-derived NPCs show a metabolism dependent on mitochondrial activity and can therefore be used also to investigate neurological disorders in which mitochondrial function is affected. The protocol covers all steps necessary for the preparation, culture, and characterization of human iPSC-derived NPCs. Graphic abstract: Schematic of the protocol for the generation of human iPSC-derived NPCs.

11.
Nat Commun ; 12(1): 1929, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771987

ABSTRACT

Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Leigh Disease/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mutation , Neurons/metabolism , Organoids/metabolism , Cells, Cultured , Child, Preschool , Humans , Induced Pluripotent Stem Cells/cytology , Leigh Disease/metabolism , Male , Metabolomics/methods , Mitochondria/genetics , Mitochondria/metabolism , Morphogenesis/genetics , Neurons/cytology , Proteomics/methods , Single-Cell Analysis/methods , Exome Sequencing
12.
Front Cell Dev Biol ; 8: 590540, 2020.
Article in English | MEDLINE | ID: mdl-33224955

ABSTRACT

Excessive ethanol exposure can cause mitochondrial and cellular toxicity. In order to discover potential counteracting interventions, it is essential to develop assays capable of capturing the consequences of ethanol exposure in human neurons, and particularly dopaminergic neurons that are crucial for the development of alcohol use disorders (AUD). Here, we developed a novel high-throughput (HT) assay to quantify mitochondrial and neuronal toxicity in human dopaminergic neuron-containing cultures (DNs) from induced pluripotent stem cells (iPSCs). The assay, dubbed mitochondrial neuronal health (MNH) assay, combines live-cell measurement of mitochondrial membrane potential (MMP) with quantification of neuronal branching complexity post-fixation. Using the MNH assay, we demonstrated that chronic ethanol exposure in human iPSC-derived DNs decreases MMP and neuronal outgrowth in a dose-dependent manner. The toxic effect of ethanol on DNs was already detectable after 1 h of exposure, and occurred similarly in DNs derived from healthy individuals and from patients with AUD. We next used the MNH assay to carry out a proof-of-concept compound screening using FDA-approved drugs. We identified potential candidate compounds modulating acute ethanol toxicity in human DNs. We found that disulfiram and baclofen, which are used for AUD treatment, and lithium caused neurotoxicity also in the absence of ethanol, while the spasmolytic drug flavoxate positively influenced MNH. Altogether, we developed an HT assay to probe human MNH and used it to assess ethanol neurotoxicity and to identify modulating agents. The MNH assay represents an effective new tool for discovering modulators of MNH and toxicity in live human neurons.

13.
Redox Biol ; 32: 101458, 2020 05.
Article in English | MEDLINE | ID: mdl-32145456

ABSTRACT

Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.


Subject(s)
Intranuclear Inclusion Bodies , Nerve Tissue Proteins , Ataxin-1/genetics , Ataxin-1/metabolism , Humans , Intranuclear Inclusion Bodies/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidative Stress
14.
J Mol Biol ; 430(7): 891-903, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29458125

ABSTRACT

Mitochondrial dysfunctions are a known pathogenetic mechanism of a number of neurological and psychiatric disorders. At the same time, mutations in genes encoding for components of the mitochondrial respiratory chain cause mitochondrial diseases, which commonly exhibit neurological symptoms. Mitochondria are therefore critical for the functionality of the human nervous system. The importance of mitochondria stems from their key roles in cellular metabolism, calcium handling, redox and protein homeostasis, and overall cellular homeostasis through their dynamic network. Here, we describe how the use of pluripotent stem cells (PSCs) may help in addressing the physiological and pathological relevance of mitochondria for the human nervous system. PSCs allow the generation of patient-derived neurons and glia and the identification of gene-specific and mutation-specific cellular phenotypes via genome engineering approaches. We discuss the recent advances in PSC-based modeling of brain diseases and the current challenges of the field. We anticipate that the careful use of PSCs will improve our understanding of the impact of mitochondria in neurological and psychiatric disorders and the search for effective therapeutic avenues.


Subject(s)
Brain Diseases/etiology , Brain/metabolism , Mitochondria/metabolism , Pluripotent Stem Cells/metabolism , Humans , Mental Disorders/etiology , Nervous System Diseases/etiology
15.
Stem Cells ; 35(7): 1655-1662, 2017 07.
Article in English | MEDLINE | ID: mdl-28544378

ABSTRACT

High attrition rates and loss of capital plague the drug discovery process. This is particularly evident for mitochondrial disease that typically involves neurological manifestations and is caused by nuclear or mitochondrial DNA defects. This group of heterogeneous disorders is difficult to target because of the variability of the symptoms among individual patients and the lack of viable modeling systems. The use of induced pluripotent stem cells (iPSCs) might significantly improve the search for effective therapies for mitochondrial disease. iPSCs can be used to generate patient-specific neural cell models in which innovative compounds can be identified or validated. Here we discuss the promises and challenges of iPSC-based drug discovery for mitochondrial disease with a specific focus on neurological conditions. We anticipate that a proper use of the potent iPSC technology will provide critical support for the development of innovative therapies against these untreatable and detrimental disorders. Stem Cells 2017;35:1655-1662.


Subject(s)
Drug Discovery/methods , Induced Pluripotent Stem Cells/drug effects , Mitochondria/drug effects , Mitochondrial Diseases/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Cell Differentiation , DNA, Mitochondrial/genetics , Gene Expression , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Proteins/agonists , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Biological , Mutation , Neurons/metabolism , Neurons/pathology , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Precision Medicine
16.
Cell Stem Cell ; 20(5): 659-674.e9, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28132834

ABSTRACT

Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system.


Subject(s)
DNA, Mitochondrial/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mitochondria/genetics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Calcium/metabolism , Cell Line , Drug Discovery/methods , Humans , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...