Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
1.
Front Immunol ; 15: 1352022, 2024.
Article in English | MEDLINE | ID: mdl-38698856

ABSTRACT

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Subject(s)
Complement Factor H , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Protein Binding , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Animals , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/metabolism , Influenza A virus/immunology , Influenza A virus/physiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Binding Sites , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/metabolism , Birds/virology , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology
2.
Biomolecules ; 14(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38540666

ABSTRACT

Pathogenic platelet factor 4 (PF4) antibodies contributed to the abnormal coagulation profiles in COVID-19 and vaccinated patients. However, the mechanism of what triggers the body to produce these antibodies has not yet been clarified. Similar patterns and many comparable features between the COVID-19 virus and heparin-induced thrombocytopenia (HIT) have been reported. Previously, we identified a new mechanism of autoimmunity in HIT in which PF4-antibodies self-clustered PF4 and exposed binding epitopes for other pathogenic PF4/eparin antibodies. Here, we first proved that the SARS-CoV-2 spike protein (SP) also binds to PF4. The binding was evidenced by the increase in mass and optical intensity as observed through quartz crystal microbalance and immunosorbent assay, while the switching of the surface zeta potential caused by protein interactions and binding affinity of PF4-SP were evaluated by dynamic light scattering and isothermal spectral shift analysis. Based on our results, we proposed a mechanism for the generation of PF4 antibodies in COVID-19 patients. We further validated the changes in zeta potential and interaction affinity between PF4 and SP and found that their binding mechanism differs from ACE2-SP binding. Importantly, the PF4/SP complexes facilitate the binding of anti-PF4/Heparin antibodies. Our findings offer a fresh perspective on PF4 engagement with the SARS-CoV-2 SP, illuminating the role of PF4/SP complexes in severe thrombotic events.


Subject(s)
COVID-19 , Thrombocytopenia , Humans , Antibodies, Monoclonal, Humanized , Immunologic Factors , Platelet Factor 4/chemistry , Platelet Factor 4/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus
3.
Infect Immun ; 91(9): e0015423, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37551971

ABSTRACT

Streptococcus pneumoniae is a Gram-positive opportunistic pathogen that can colonize the upper respiratory tract. It is a leading cause of a wide range of infectious diseases, including community-acquired pneumonia and meningitis. Pneumococcal infections cause 1-2 million deaths per year, most of which occur in developing countries. Here, we focused on three choline-binding proteins (CBPs), i.e., PspC, PspA, and LytA. These pneumococcal proteins have different surface-exposed regions but share related choline-binding anchors. These surface-exposed pneumococcal proteins are in direct contact with host cells and have diverse functions. We explored the role of the three CBPs on adhesion and pathogenicity in a human host by performing relevant imaging and functional analyses, such as electron microscopy, confocal laser scanning microscopy, and functional quantitative assays, targeting biofilm formation and the hemolytic capacity of S. pneumoniae. In vitro biofilm formation assays and electron microscopy experiments were used to examine the ability of knockout mutant strains lacking the lytA, pspC, or pspA genes to adhere to surfaces. We found that LytA plays an important role in robust synthesis of the biofilm matrix. PspA and PspC appeared crucial for the hemolytic effects of S. pneumoniae on human red blood cells. Furthermore, all knockout mutants caused less damage to endothelial cells than wild-type bacteria, highlighting the significance of each CPB for the overall pathogenicity of S. pneumoniae. Hence, in addition to their structural function within the cell wall of S. pneumoniae, each of these three surface-exposed CBPs controls or mediates multiple steps during bacterial pathogenesis.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Carrier Proteins/genetics , Carrier Proteins/metabolism , Endothelial Cells/metabolism , Choline/metabolism , Bacterial Proteins/metabolism , Pneumococcal Infections/microbiology , Membrane Proteins/metabolism , Erythrocytes
4.
Eur J Immunol ; 53(11): e2250284, 2023 11.
Article in English | MEDLINE | ID: mdl-37503840

ABSTRACT

To obtain a better understanding of the biology behind life-threatening fungal infections caused by Candida albicans, we recently conducted an in silico screening for fungal and host protein interaction partners. We report here that the extracellular domain of human CD4 binds to the moonlighting protein enolase 1 (Eno1) of C. albicans as predicted bioinformatically. By using different anti-CD4 monoclonal antibodies, we determined that C. albicans Eno1 (CaEno1) primarily binds to the extracellular domain 3 of CD4. Functionally, we observed that CaEno1 binding to CD4 activated lymphocyte-specific protein tyrosine kinase (LCK), which was also the case for anti-CD4 monoclonal antibodies tested in parallel. CaEno1 binding to naïve human CD4+ T cells skewed cytokine secretion toward a Th2 profile indicative of poor fungal control. Moreover, CaEno1 inhibited human memory CD4+ T-cell recall responses. Therapeutically, CD4+ T cells transduced with a p41/Crf1-specific T-cell receptor developed for adoptive T-cell therapy were not inhibited by CaEno1 in vitro. Together, the interaction of human CD4+ T cells with CaEno1 modulated host CD4+ T-cell responses in favor of the fungus. Thus, CaEno1 mediates not only immune evasion through its interference with complement regulators but also through the direct modulation of CD4+ T-cell responses.


Subject(s)
Candida albicans , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes , Phosphopyruvate Hydratase/metabolism , Antibodies, Monoclonal/metabolism
5.
J Immunol ; 211(5): 804-815, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37436030

ABSTRACT

Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.


Subject(s)
Aspergillus fumigatus , Candida albicans , Phosphopyruvate Hydratase , Animals , Humans , Mice , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Candida albicans/enzymology , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Monocytes/metabolism , Monocytes/microbiology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phosphopyruvate Hydratase/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/microbiology
6.
mSphere ; 8(4): e0014223, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37358300

ABSTRACT

Streptococcus pneumoniae-induced hemolytic uremic syndrome (Sp-HUS) is a kidney disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. This disease is frequently underdiagnosed and its pathophysiology is poorly understood. In this work, we compared clinical strains, isolated from infant Sp-HUS patients, with a reference pathogenic strain D39, for host cytotoxicity and further explored the role of Sp-derived extracellular vesicles (EVs) in the pathogenesis of an HUS infection. In comparison with the wild-type strain, pneumococcal HUS strains caused significant lysis of human erythrocytes and increased the release of hydrogen peroxide. Isolated Sp-HUS EVs were characterized by performing dynamic light-scattering microscopy and proteomic analysis. Sp-HUS strain released EVs at a constant concentration during growth, yet the size of the EVs varied and several subpopulations emerged at later time points. The cargo of the Sp-HUS EVs included several virulence factors at high abundance, i.e., the ribosomal subunit assembly factor BipA, the pneumococcal surface protein A, the lytic enzyme LytC, several sugar utilization, and fatty acid synthesis proteins. Sp-HUS EVs strongly downregulated the expression of the endothelial surface marker platelet endothelial cell adhesion molecule-1 and were internalized by human endothelial cells. Sp-HUS EVs elicited the release of pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6) and chemokines (CCL2, CCL3, CXCL1) by human monocytes. These findings shed new light on the overall function of Sp-EVs, in the scope of infection-mediated HUS, and suggest new avenues of research for exploring the usefulness of Sp-EVs as therapeutic and diagnostic targets. IMPORTANCE Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious and underdiagnosed deadly complication of invasive pneumococcal disease. Despite the introduction of the pneumococcal vaccine, cases of Sp-HUS continue to emerge, especially in children under the age of 2. While a lot has been studied regarding pneumococcal proteins and their role on Sp-HUS pathophysiology, little is known about the role of extracellular vesicles (EVs). In our work, we isolate and initially characterize EVs from a reference pathogenic strain (D39) and a strain isolated from a 2-year-old patient suffering from Sp-HUS. We demonstrate that despite lacking cytotoxicity toward human cells, Sp-HUS EVs are highly internalized by endothelial cells and can trigger cytokine and chemokine production in monocytes. In addition, this work specifically highlights the distinct morphological characteristics of Sp-HUS EVs and their unique cargo. Overall, this work sheds new light into potentially relevant players contained in EVs that might elucidate about pneumococcal EVs biogenesis or pose as interesting candidates for vaccine design.


Subject(s)
Extracellular Vesicles , Hemolytic-Uremic Syndrome , Infant , Child , Humans , Child, Preschool , Streptococcus pneumoniae , Endothelial Cells/pathology , Proteomics , Hemolytic-Uremic Syndrome/diagnosis , Hemolytic-Uremic Syndrome/etiology , Hemolytic-Uremic Syndrome/pathology , Cytokines , Pneumococcal Vaccines
7.
Front Immunol ; 14: 1200725, 2023.
Article in English | MEDLINE | ID: mdl-37359546

ABSTRACT

Purpose: Polymorphisms in complement genes are risk-associated for age-related macular degeneration (AMD). Functional analysis revealed a common deficiency to control the alternative complement pathway by risk-associated gene polymorphisms. Thus, we investigated the levels of terminal complement complex (TCC) in the plasma of wet AMD patients with defined genotypes and the impact of the complement activation of their plasma on second-messenger signaling, gene expression, and cytokine/chemokine secretion in retinal pigment epithelium (RPE) cells. Design: Collection of plasma from patients with wet AMD (n = 87: 62% female and 38% male; median age 77 years) and controls (n = 86: 39% female and 61% male; median age 58 years), grouped for risk factor smoking and genetic risk alleles CFH 402HH and ARMS2 rs3750846, determination of TCC levels in the plasma, in vitro analysis on RPE function during exposure to patients' or control plasma as a complement source. Methods: Genotyping, measurement of TCC concentrations, ARPE-19 cell culture, Ca2+ imaging, gene expression by qPCR, secretion by multiplex bead analysis of cell culture supernatants. Main outcome measures: TCC concentration in plasma, intracellular free Ca2+, relative mRNA levels, cytokine secretion. Results: TCC levels in the plasma of AMD patients were five times higher than in non-AMD controls but did not differ in plasma from carriers of the two risk alleles. Complement-evoked Ca2+ elevations in RPE cells differed between patients and controls with a significant correlation between TCC levels and peak amplitudes. Comparing the Ca2+ signals, only between the plasma of smokers and non-smokers, as well as heterozygous (CFH 402YH) and CFH 402HH patients, revealed differences in the late phase. Pre-stimulation with complement patients' plasma led to sensitization for complement reactions by RPE cells. Gene expression for surface molecules protective against TCC and pro-inflammatory cytokines increased after exposure to patients' plasma. Patients' plasma stimulated the secretion of pro-inflammatory cytokines in the RPE. Conclusion: TCC levels were higher in AMD patients but did not depend on genetic risk factors. The Ca2+ responses to patients' plasma as second-messenger represent a shift of RPE cells to a pro-inflammatory phenotype and protection against TCC. We conclude a substantial role of high TCC plasma levels in AMD pathology.


Subject(s)
Complement Membrane Attack Complex , Macular Degeneration , Male , Female , Humans , Complement Membrane Attack Complex/genetics , Complement Factor H/metabolism , Macular Degeneration/pathology , Genotype , Cytokines/genetics
8.
Dtsch Med Wochenschr ; 148(12): 774-779, 2023 06.
Article in German | MEDLINE | ID: mdl-37257480

ABSTRACT

Complement is a central part of the immune system. In the human body, complement is responsible for recognition of infectious microbes, for coordinating the adaptive immune response, controlling homeotic reactions and for the non-inflammatory removal of modified self-cells and infectious microbes. Complement is also closely linked to another proteolytic cascade, the coagulation system. Defective activation and altered complement regulation drives pathology of several severe human kidney diseases.This manuscript summarizes the latest developments on the role of complement in kidney diseases, on new complement inhibitors and on recent complement targeting therapies. In particular focusing on diseases (1) atypical Hemolytic Uremic Syndrome, (2) C3 Glomerulopathy, (3) Anti Neutrophil Cytoplasmic Antibody Mediated Vasculitis, (4) IgA Nephropathy, (5) Membranous Glomerulopathy, (6) Systemic Lupus Erythematosus, (7) Transplant rejection and (8) COVID 19 Infection-Triggered Kidney Diseases. More excitement is generated in this field, as more and more complement mediated diseases can be treated. Several complement targeting compounds are approved by the EMA and FDA and an increasing number of new candidates are in late phase clinical trials. In addition, clinical guidelines are developed for Diagnosis and Therapy of complement mediated diseases, new biomarkers are evaluated in clinical studies, and diagnostic guidelines are in development. The recent Covid infections showed a clear link of complement in thrombo inflammation, which ultimately results in kidney damage. These aspects have increased further the focus of complement inhibitors in COVID infections.


Subject(s)
COVID-19 , Glomerulonephritis, IGA , Kidney Diseases , Humans , Complement Activation , Complement System Proteins/therapeutic use , Kidney Diseases/drug therapy , Complement Inactivating Agents/therapeutic use , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/pathology , Kidney/pathology
9.
Adv Sci (Weinh) ; 10(20): e2206713, 2023 07.
Article in English | MEDLINE | ID: mdl-37211685

ABSTRACT

Candida albicans (C. albicans) is an opportunistic pathogen increasingly causing candidiasis worldwide. This study aims to investigate the pattern of systemic immune responses triggered by C. albicans with disease associated variation of Sap2, identifying the novel evasion strategies utilized by clinical isolates. Specifically, a variation in clinical isolates is identified at nucleotide position 817 (G to T). This homozygous variation causes the 273rd amino acid exchange from valine to leucine, close to the proteolytic activation center of Sap2. The mutant (Sap2-273L) generated from SC5314 (Sap2-273V) background carrying the V273L variation within Sap2 displays higher pathogenicity. In comparison to mice infected with Sap2-273V strain, mice infected with Sap2-273L exhibit less complement activation indicated by less serum C3a generation and weaker C3b deposition in the kidney. This inhibitory effect is mainly achieved by Sap2273L -mediated stronger degradation of C3 and C3b. Furthermore, mice infected with Sap2-273L strain exhibit more macrophage phenotype switching from M0 to M2-like and more TGF-ß release which further influences T cell responses, generating an immunosuppressed cellular microenvironment characterized by more Tregs and exhausted T cell formation. In summary, the disease-associated sequence variation of Sap2 enhances pathogenicity by complement evasion and M2-like phenotype switching, promoting a more efficient immunosuppressed microenvironment.


Subject(s)
Candida albicans , Fungal Proteins , Animals , Mice , Candida albicans/genetics , Fungal Proteins/genetics , Macrophages , Phenotype , Virulence/genetics
10.
Article in English | MEDLINE | ID: mdl-36723286

ABSTRACT

BACKGROUND: Emerging case series described a temporal association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and de novo or relapsing kidney diseases. We aimed to further understand vaccination- and coronavirus disease 2019 (COVID-19)-associated kidney diseases. METHODS: We present findings from native kidney biopsies of patients recently vaccinated against SARS-CoV-2 ( n =27) and those with COVID-19 ( n =15), reviewed at a single German center. Diagnoses were compared among all native kidney biopsies ( n =10,206) obtained between the prepandemic (2019), pandemic (2020), and vaccination periods (2021) to determine whether there was an increase in kidney diseases in the observed periods. RESULTS: Biopsy indication was increased serum creatinine and/or new-onset proteinuria. Glomerulopathies (20/27, 74%) were more common than tubulointerstitial diseases in postvaccination patients, with necrotizing GN (8/27, 30%) and primary podocytopathies and other GN types (6/27, 22% each) the most common forms. Acute tubular injury was the most common kidney disease in patients with COVID-19, followed by thrombotic microangiopathy (TMA) and necrotizing GN. The postvaccination and COVID-19 infection groups had similar kidney function recovery rates (69% and 73%, respectively). Furthermore, the frequencies of necrotizing GN, pauci-immune GN, TMA, or primary podocytopathies at our center did not increase between 2019 and 2021. CONCLUSIONS: We observed differences in entity frequencies between the SARS-CoV-2 vaccination or COVID-19 groups, with glomerulopathies being more common in patients after vaccination and tubulointerstitial diseases in patients with COVID-19. Cases of TMA were observed only in the COVID-19 group. We detected no increase in the frequency of necrotizing GN, TMA, or podocytopathies between 2019 and 2021. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Kidney Histopathology After COVID-19 and SARS-CoV-2 Vaccination, NCT05043168.

11.
Nat Commun ; 14(1): 473, 2023 01 28.
Article in English | MEDLINE | ID: mdl-36709213

ABSTRACT

Membranous nephropathy (MN) is an antibody-mediated autoimmune disease characterized by glomerular immune complexes containing complement components. However, both the initiation pathways and the pathogenic significance of complement activation in MN are poorly understood. Here, we show that components from all three complement pathways (alternative, classical and lectin) are found in renal biopsies from patients with MN. Proximity ligation assays to directly visualize complement assembly in the tissue reveal dominant activation via the classical pathway, with a close correlation to the degree of glomerular C1q-binding IgG subclasses. In an antigen-specific autoimmune mouse model of MN, glomerular damage and proteinuria are reduced in complement-deficient mice compared with wild-type littermates. Severe disease with progressive ascites, accompanied by extensive loss of the integral podocyte slit diaphragm proteins, nephrin and neph1, only occur in wild-type animals. Finally, targeted silencing of C3 using RNA interference after the onset of proteinuria significantly attenuates disease. Our study shows that, in MN, complement is primarily activated via the classical pathway and targeting complement components such as C3 may represent a promising therapeutic strategy.


Subject(s)
Glomerulonephritis, Membranous , Kidney Diseases , Mice , Animals , Glomerulonephritis, Membranous/genetics , Complement Activation , Kidney Glomerulus/pathology , Complement System Proteins/metabolism , Immunoglobulin G , Kidney Diseases/pathology , Proteinuria/metabolism
12.
Front Immunol ; 13: 1008294, 2022.
Article in English | MEDLINE | ID: mdl-36451836

ABSTRACT

Atypical hemolytic-uremic syndrome (aHUS) is a severe thrombotic microangiopathy in which kidney involvement is common. aHUS can be due to either genetic or acquired abnormalities, with most abnormalities affecting the alternative complement pathway. Several genetic factors/alterations can drive the clinical presentation, therapeutic response, and risk of recurrence, especially recurrence following kidney transplantation. We report here the case of a 22-year-old man who developed a severe form of aHUS. Renal biopsy revealed thrombotic microangiopathy and features of chronic renal damage. Despite two eculizumab infusions, the patient remained dialysis dependent. Two novel rare variants, c.109G>A (p.E37K) and c.159 C>A (p.Y53*), were identified in the factor H-related 2 (FHR2) gene, and western blot analysis revealed a significant reduction in the level of FHR2 protein in the patient's serum. Although FHR2 involvement in complement 3 glomerulopathy has been reported previously, a role for FRH2 as a complement modulator has not yet been definitively shown. In addition, no cases of aHUS in individuals with FHR2 variants have been reported. Given the role of FHRs in the complement system and the fact that this patient was a candidate for a kidney transplant, we studied the relevance of low FHR2 plasma levels through a set of functional in vitro assays. The aim of our work was to determine if low FHR2 plasma levels could influence complement control at the endothelial surface with a view to identifying a therapeutic approach tailored to this specific patient. Interestingly, we observed that low FHR2 levels in the patient's serum could induce complement activation, as well as C5b-9 deposition on human endothelial cells, and affected cell morphology. As C5b-9 deposition is a prerequisite for endothelial cell damage, these results suggest that extremely low FHR2 plasma levels increase the risk of aHUS. Given their ability to reduce C5b-9 deposition, recombinant FHR2 and eculizumab were tested in vitro and found to inhibit hemolysis and endothelial cell surface damage. Both molecules showed effective and comparable profiles. Based on these results, the patient underwent a kidney transplant, and received eculizumab as induction and maintenance therapy. Five years after transplantation, the patient remains in good general health, with stable graft function and no evidence of disease recurrence. To our knowledge, this is first reported case of an aHUS patient carrying FHR2 mutations and provides an example of a translational therapeutic approach in kidney transplantation.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Kidney Transplantation , Thrombotic Microangiopathies , Male , Humans , Young Adult , Adult , Atypical Hemolytic Uremic Syndrome/genetics , Kidney Transplantation/adverse effects , Complement Membrane Attack Complex , Endothelial Cells , Translational Science, Biomedical
14.
J Mater Chem B ; 10(38): 7708-7716, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36069407

ABSTRACT

Heparin-induced thrombocytopenia (HIT) is caused by newly formed platelet-activating antibodies against complexes formed between platelet factor 4 (PF4) and heparin (H). HIT can result in life-threatening complications; thus, early detection of HIT antibodies is crucial for the treatment of the disease. The enzyme-linked immune absorbance assay (ELISA) for the identification of HIT antibodies is widely used in many laboratories, but in general, this test provides only ∼50% accuracy while other methods show multiple limitations. Here, we developed a new cell-based ELISA to improve the detection of HIT antibodies. Instead of immobilizing PF4 or PF4/H complexes directly onto a plate as in the standard ELISA, we added the complexes on breast cancer cells, i.e., cell line MDA-MB-231, and applied the same protocol for antibody detection. Using confocal laser scanning microscopy and flow cytometry for the characterization of bound complexes, we identified two types of HIT-mimicked antibodies (KKO and 1E12), which were able to differentiate from the non-HIT antibody (RTO). PF4-treated MDA-MB-231 cells allowed binding of HIT-mimicked antibodies better than PF4/H complexes. With human sera, the cell-based ELISA allowed better differentiation of clinically relevant from non-clinically relevant HIT antibodies as compared with the standard ELISA. Our findings provide a potential approach that contributes to the development of better assays for the detection of HIT antibodies.


Subject(s)
Breast Neoplasms , Thrombocytopenia , Antibodies , Breast Neoplasms/drug therapy , Enzyme-Linked Immunosorbent Assay , Female , Heparin/adverse effects , Humans , Platelet Factor 4/adverse effects , Platelet Factor 4/metabolism , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis
15.
Mol Immunol ; 150: 90-98, 2022 10.
Article in English | MEDLINE | ID: mdl-36027818

ABSTRACT

Paul Ehrlich was a pioneering Immunobiologist and physician who coined the term 'complement' in the year 1899. He was a leading visionary scientist who worked in the late 19th and early 20th centuries in Berlin and Frankfurt. He received numerous awards and honors for his substantial contributions to immunobiology and medicine, including the identification of complement, and he received the Nobel Prize in Physiology or Medicine in 1908 in recognition of his work on immunity. During his clinical work, Paul Ehrlich treated a patient with paroxysmal hemoglobinuria and reported his diagnostic approaches, including those related to erythrocyte lysis and microscopic cell analysis, to the Verein für Innere Medicine/Society of Internal Medicine, Berlin. Paroxysmal nocturnal hemoglobinuria was shown to be a complement-mediated disease; treatment of this disease with the complement inhibitor Eculzimab/Soliris was approved by the European Medicines Agency in 2003 and by the United States Food and Drug Administration in 2007.


Subject(s)
Nobel Prize , Physicians , Complement Inactivating Agents , History, 20th Century , Humans , Male , United States
16.
Front Immunol ; 13: 826513, 2022.
Article in English | MEDLINE | ID: mdl-35693785

ABSTRACT

Since the re-classification of membranoproliferative glomerulonephritis the new disease entity C3 glomerulopathy is diagnosed if C3 deposition is clearly dominant over immunoglobulins in immunohistochemistry or immunofluorescence. Although this new definition is more orientated at the pathophysiology as mediated by activity of the alternative complement pathway C3 glomerulopathy remains a heterogenous group of disorders. Genetic or autoimmune causes are associated in several but not in all patients with this disease. However, prognosis is poorly predictable, and clinicians cannot directly identify patients that might benefit from therapy. Moreover, therapy may range from supportive care alone, unspecific immune suppression, plasma treatment, or plasma exchange to complement inhibition. The current biopsy based diagnostic approaches sometimes combined with complement profiling are not sufficient to guide clinicians neither (i) whether to treat an individual patient, nor (ii) to choose the best therapy. With this perspective, we propose an interdisciplinary diagnostic approach, including detailed analysis of the kidney biopsy for morphological alterations and immunohistochemical staining, for genetic analyses of complement genes, complement activation patterning in plasma, and furthermore for applying novel approaches for convertase typing and complement profiling directly in renal tissue. Such a combined diagnostic approach was used here for a 42-year-old female patient with a novel mutation in the Factor H gene, C3 glomerulopathy and signs of chronic endothelial damage. We present here an approach that might in future help to guide therapy of renal diseases with relevant complement activation, especially since diverse new anti-complement agents are under clinical investigation.


Subject(s)
Complement C3 , Glomerulonephritis, Membranoproliferative , Adult , Complement Activation , Complement Pathway, Alternative/genetics , Female , Glomerulonephritis, Membranoproliferative/diagnosis , Glomerulonephritis, Membranoproliferative/therapy , Humans , Immunoglobulins/therapeutic use
17.
Sci Rep ; 12(1): 5818, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388026

ABSTRACT

Sialic acids as the terminal caps of the cellular glycocalyx play an essential role in self-recognition and were shown to modulate complement processes via interaction between α2,3-linked sialic acids and complement factor H. Previously, it was suggested that low molecular weight α2,8-linked polysialic acid (polySia avDP20) interferes with complement activation, but the exact molecular mechanism is still unclear. Here, we show that soluble polySia avDP20 (molecular weight of ~ 6 kDa) reduced the binding of serum-derived alternative pathway complement activator properdin to the cell surface of lesioned Hepa-1c1c7 and PC-12 neuroblastoma cells. Furthermore, polySia avDP20 added to human serum blocked the alternative complement pathway triggered by plate-bound lipopolysaccharides. Interestingly, no inhibitory effect was observed with monosialic acid or oligosialic acid with a chain length of DP3 and DP5. In addition, polySia avDP20 directly bound properdin, but not complement factor H. These data show that soluble polySia avDP20 binds properdin and reduces the alternative complement pathway activity. Results strengthen the previously described concept of self-recognition of sialylation as check-point control of complement activation in innate immunity.


Subject(s)
Complement Pathway, Alternative , Properdin , Humans , Molecular Weight , Properdin/metabolism , Sialic Acids/metabolism
18.
Commun Biol ; 5(1): 152, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194132

ABSTRACT

The complement system constitutes the innate defense against pathogens. Its dysregulation leads to diseases and is a critical determinant in many viral infections, e.g., COVID-19. Factor H (FH) is the main regulator of the alternative pathway of complement activation and could be a therapy to restore homeostasis. However, recombinant FH is not available. Engineered FH versions may be alternative therapeutics. Here, we designed a synthetic protein, MFHR13, as a multitarget complement regulator. It combines the dimerization and C5-regulatory domains of human FH-related protein 1 (FHR1) with the C3-regulatory and cell surface recognition domains of human FH, including SCR 13. In summary, the fusion protein MFHR13 comprises SCRs FHR11-2:FH1-4:FH13:FH19-20. It protects sheep erythrocytes from complement attack exhibiting 26 and 4-fold the regulatory activity of eculizumab and human FH, respectively. Furthermore, we demonstrate that MFHR13 and FHR1 bind to all proteins forming the membrane attack complex, which contributes to the mechanistic understanding of FHR1. We consider MFHR13 a promising candidate as therapeutic for complement-associated diseases.


Subject(s)
Blood Proteins/metabolism , Complement Activation , Complement Factor H/metabolism , Complement System Proteins/metabolism , Erythrocytes/metabolism , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Animals , Bryopsida/genetics , Bryopsida/metabolism , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Complement Membrane Attack Complex/metabolism , Humans , Models, Molecular , Pandemics/prevention & control , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , SARS-CoV-2/physiology , Sheep
19.
J Bacteriol ; 204(1): e0018421, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34633872

ABSTRACT

Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host's immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.


Subject(s)
Bacterial Proteins/metabolism , Complement System Proteins/metabolism , Opsonization/physiology , Peptide Hydrolases/metabolism , Staphylococcus aureus/enzymology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Humans , Peptide Hydrolases/genetics , Staphylococcus aureus/metabolism
20.
Proteomes ; 9(4)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34941814

ABSTRACT

Defective complement activation has been associated with various types of kidney disease. This led to the hypothesis that specific urine complement fragments may be associated with kidney disease etiologies, and disease progression may be reflected by changes in these complement fragments. We investigated the occurrence of complement fragments in urine, their association with kidney function and disease etiology in 16,027 subjects, using mass spectrometry based peptidomics data from the Human Urinary Proteome/Peptidome Database. Twenty-three different urinary peptides originating from complement proteins C3, C4 and factor B (CFB) could be identified. Most C3-derived peptides showed inverse association with estimated glomerular filtration rate (eGFR), while the majority of peptides derived from CFB demonstrated positive association with eGFR. Several peptides derived from the complement proteins C3, C4 and CFB were found significantly associated with specific kidney disease etiologies. These peptides may depict disease-specific complement activation and could serve as non-invasive biomarkers to support development of complement interventions through assessing complement activity for patients' stratification and monitoring of drug impact. Further investigation of these complement peptides may provide additional insight into disease pathophysiology and could possibly guide therapeutic decisions, especially when targeting complement factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...