Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2198, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503727

ABSTRACT

Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.


Subject(s)
Immunologic Surveillance , Regulatory Sequences, Nucleic Acid , Cell Division , Cell Line, Tumor , Chromatin
2.
Bioessays ; 45(10): e2300075, 2023 10.
Article in English | MEDLINE | ID: mdl-37530178

ABSTRACT

Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their members are causative of a group of rare Mendelian diseases named chromatinopathies (CPs). Despite a broad spectrum of clinical features and the perturbations of the epigenetic machinery characterizing the CPs, recent findings highlighted negligible changes in gene expression. These data argue in favor of possible noncanonical functions of chromatin condensates in regulating the genome's spatial organization and, consequently, the nuclear mechanics. In this review, we discuss how condensates may impact nuclear mechanical properties, thus affecting the cellular response to mechanical cues and, eventually, cell fate and identity. Chromatin condensates organize macromolecules in the nucleus orchestrating the transcription regulation and mutations in their members are responsible for rare diseases named chromatinopathies. We argue that chromatin condensates, in concert with the nuclear lamina, may also govern the nuclear mechanical properties affecting the cellular response to external cues.


Subject(s)
Cell Nucleus , Chromatin , Chromatin/genetics , Chromatin/metabolism , Cell Nucleus/genetics , Mutation
3.
Mol Autism ; 14(1): 20, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264456

ABSTRACT

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. METHODS: We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. RESULTS: Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. LIMITATIONS: We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. CONCLUSIONS: Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.


Subject(s)
Haploinsufficiency , Neural Stem Cells , Mice , Animals , Humans , Neurons/metabolism , Mitochondria/metabolism , Neural Stem Cells/metabolism , Chromatin/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
4.
Methods Mol Biol ; 2655: 183-200, 2023.
Article in English | MEDLINE | ID: mdl-37212997

ABSTRACT

The polycomb group (PcG) proteins play a central role in the maintenance of a repressive state of gene expression. Recent findings demonstrate that PcG components are organized into nuclear condensates, contributing to the reshaping of chromatin architecture in physiological and pathological conditions, thus affecting the nuclear mechanics. In this context, direct stochastic optical reconstruction microscopy (dSTORM) provides an effective tool to achieve a detailed characterization of PcG condensates by visualizing them at a nanometric level. Furthermore, by analyzing dSTORM datasets with cluster analysis algorithms, quantitative information can be yielded regarding protein numbers, grouping, and spatial organization. Here, we describe how to set up a dSTORM experiment and perform the data analysis to study PcG complexes' components in adhesion cells quantitatively.


Subject(s)
Chromatin , Microscopy , Polycomb-Group Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism
5.
Cancer Res ; 83(2): 195-218, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36409826

ABSTRACT

Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE: Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Fucose/metabolism , Signal Transduction , Brain Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Line, Tumor
6.
Lab Chip ; 22(18): 3453-3463, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35946995

ABSTRACT

Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges. One of these is the effect of the sample flow velocity on the classification performances. Indeed, cell flow speed affects the quality of image acquisition by increasing motion blur and decreasing the number of acquired frames per sample. We investigate how these visual distortions impact the final classification task in a real-world use-case of cancer cell screening, using a microfluidic platform in combination with light sheet fluorescence microscopy. We demonstrate, by analyzing both simulated and experimental data, that it is possible to achieve high flow speed and high accuracy in single-cell classification. We prove that it is possible to overcome the 3D slice variability of the acquired 3D volumes, by relying on their 2D sum z-projection transformation, to reach an efficient real time classification with an accuracy of 99.4% using a convolutional neural network with transfer learning from simulated data. Beyond this specific use-case, we provide a web platform to generate a synthetic dataset and to investigate the effect of flow speed on cell classification for any biological samples and a large variety of fluorescence microscopes (https://www.creatis.insa-lyon.fr/site7/en/MicroVIP).


Subject(s)
Algorithms , Microfluidics , Machine Learning , Microscopy, Fluorescence , Neural Networks, Computer
7.
Oncogene ; 41(15): 2196-2209, 2022 04.
Article in English | MEDLINE | ID: mdl-35217791

ABSTRACT

Breast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independent negative factor correlated with the progression of the disease. Genetic inhibition of Sam68 caused a defect in PARP-induced PAR chain synthesis upon DNA-damaging insults, resulting in cell death of TNBC cells. In contrast, BC stem-like cells were able to survive due to an upregulation of Rad51. Importantly, the inhibition of Rad51 showed synthetic lethal effect with the silencing of Sam68, hampering the cell viability of patient-derived BCSphCs and stabilizing the growth of tumor xenografts, including those TNBC carrying BRCA mutation. Moreover, the analysis of Myc, Sam68 and Rad51 expression demarcated a signature of a poor outcome in a large cohort of BC patients. Thus, our findings suggest the importance of targeting Sam68-PARP1 axis and Rad51 as potential therapeutic candidates to counteract the expansion of BC cells with an aggressive phenotype.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , DNA-Binding Proteins , RNA-Binding Proteins , Rad51 Recombinase , Triple Negative Breast Neoplasms , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Humans , Neoplastic Stem Cells/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Triple Negative Breast Neoplasms/pathology
8.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613611

ABSTRACT

Haploinsufficiency of the SETD5 gene, encoding a SET domain-containing histone methyltransferase, has been identified as a cause of intellectual disability and Autism Spectrum Disorder (ASD). Recently, the zebrafish has emerged as a valuable model to study neurodevelopmental disorders because of its genetic tractability, robust behavioral traits and amenability to high-throughput drug screening. To model human SETD5 haploinsufficiency, we generated zebrafish setd5 mutants using the CRISPR/Cas9 technology and characterized their morphological, behavioral and molecular phenotypes. According to our observation that setd5 is expressed in adult zebrafish brain, including those areas controlling social behavior, we found that setd5 heterozygous mutants exhibit defective aggregation and coordination abilities required for shoaling interactions, as well as indifference to social stimuli. Interestingly, impairment in social interest is rescued by risperidone, an antipsychotic drug used to treat behavioral traits in ASD individuals. The molecular analysis underscored the downregulation of genes encoding proteins involved in the synaptic structure and function in the adult brain, thus suggesting that brain hypo-connectivity could be responsible for the social impairments of setd5 mutant fishes. The zebrafish setd5 mutants display ASD-like features and are a promising setd5 haploinsufficiency model for drug screening aimed at reversing the behavioral phenotypes.


Subject(s)
Autism Spectrum Disorder , Methyltransferases , Animals , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Brain/metabolism , CRISPR-Cas Systems , Methyltransferases/genetics , Methyltransferases/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Social Behavior
9.
Gut ; 71(1): 119-128, 2022 01.
Article in English | MEDLINE | ID: mdl-33436496

ABSTRACT

OBJECTIVE: Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy. DESIGN: A collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional evaluation of HER2 activation and global RNA-seq to identify the mechanisms underlying therapy resistance. RESULTS: Here we show that in CD44v6-positive CR-CSCs, high HER2 expression levels are associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which promotes the acetylation at the regulatory elements of the Erbb2 gene. HER2 targeting in combination with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) inhibitors induces CR-CSC death and regression of tumour xenografts, including those carrying Kras and Pik3ca mutation. Requirement for the triple targeting is due to the presence of cancer-associated fibroblasts, which release cytokines able to confer CR-CSC resistance to PI3K/AKT inhibitors. In contrast, targeting of PI3K/AKT as monotherapy is sufficient to kill liver-disseminating CR-CSCs in a model of adjuvant therapy. CONCLUSIONS: While PI3K targeting kills liver-colonising CR-CSCs, the concomitant inhibition of PI3K, HER2 and MEK is required to induce regression of tumours resistant to anti-EGFR therapies. These data may provide a rationale for designing clinical trials in the adjuvant and metastatic setting.


Subject(s)
Colorectal Neoplasms/pathology , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Receptor, ErbB-2/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Cetuximab/pharmacology , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm , Humans , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Trastuzumab/pharmacology , Tumor Cells, Cultured
10.
Cancers (Basel) ; 13(19)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34638453

ABSTRACT

Cancer is a group of heterogeneous diseases that results from the occurrence of genetic alterations combined with epigenetic changes and environmental stimuli that increase cancer cell plasticity. Indeed, multiple cancer cell populations coexist within the same tumour, favouring cancer progression and metastatic dissemination as well as drug resistance, thereby representing a major obstacle for treatment. Epigenetic changes contribute to the onset of intra-tumour heterogeneity (ITH) as they facilitate cell adaptation to perturbation of the tumour microenvironment. Despite being its central role, the intrinsic multi-layered and reversible epigenetic pattern limits the possibility to uniquely determine its contribution to ITH. In this review, we first describe the major epigenetic mechanisms involved in tumourigenesis and then discuss how single-cell-based approaches contribute to dissecting the key role of epigenetic changes in tumour heterogeneity. Furthermore, we highlight the importance of dissecting the interplay between genetics, epigenetics, and tumour microenvironments to decipher the molecular mechanisms governing tumour progression and drug resistance.

11.
JCI Insight ; 6(23)2021 12 08.
Article in English | MEDLINE | ID: mdl-34673573

ABSTRACT

Medulloblastoma (MB), one of the most malignant brain tumors of childhood, comprises distinct molecular subgroups, with p53 mutant sonic hedgehog-activated (SHH-activated) MB patients having a very severe outcome that is associated with unfavorable histological large cell/anaplastic (LC/A) features. To identify the molecular underpinnings of this phenotype, we analyzed a large cohort of MB developing in p53-deficient Ptch+/- SHH mice that, unexpectedly, showed LC/A traits that correlated with mTORC1 hyperactivation. Mechanistically, mTORC1 hyperactivation was mediated by a decrease in the p53-dependent expression of mTORC1 negative regulator Tsc2. Ectopic mTORC1 activation in mouse MB cancer stem cells (CSCs) promoted the in vivo acquisition of LC/A features and increased malignancy; accordingly, mTORC1 inhibition in p53-mutant Ptch+/- SHH MB and CSC-derived MB resulted in reduced tumor burden and aggressiveness. Most remarkably, mTORC1 hyperactivation was detected only in p53-mutant SHH MB patient samples, and treatment with rapamycin of a human preclinical model phenocopying this subgroup decreased tumor growth and malignancy. Thus, mTORC1 may act as a specific druggable target for this subset of SHH MB, resulting in the implementation of a stringent risk stratification and in the potentially rapid translation of this precision medicine approach into the clinical setting.


Subject(s)
Hedgehog Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Medulloblastoma/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Tumor , Humans , Medulloblastoma/pathology , Mice
12.
Methods Mol Biol ; 2318: 187-208, 2021.
Article in English | MEDLINE | ID: mdl-34019291

ABSTRACT

MYC is a transcription factor playing multiple functions both in physiological and pathological settings. Biochemical characterizations, combined with the analyses of MYC chromatin binding, have shown that its pleiotropic activity depends on the chromatin context and its protein-protein interactions with different cofactors. In order to determine the contribution of MYC in a certain biological condition, it would be relevant to analyze the concomitant binding of MYC and its associated proteins, in relationship to the chromatin environment. To this end, we here provide a simple method to parallel map the genome-wide binding of MYC-associated proteins, together with the chromatin profiling of multiple histone modifications. We detail the procedure to perform high-throughput ChIP-seq (HT-ChIP-seq) with a variety of biological samples. In addition, we describe simple bioinformatic steps to determine the distribution of MYC binding with respect to the chromatin context and the association of its cofactors. The described approach will permit the reproducible characterization of MYC activity in different biological contexts.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Epigenomics/methods , Proto-Oncogene Proteins c-myc/genetics , Chromatin/genetics , Chromatin Immunoprecipitation/methods , Computational Biology/methods , DNA/genetics , Epigenesis, Genetic/genetics , Genes, myc/genetics , Genes, myc/physiology , High-Throughput Nucleotide Sequencing/methods , Histone Code/genetics , Histones/metabolism , Humans , Protein Processing, Post-Translational/genetics , Proto-Oncogene Proteins c-myc/metabolism , Sequence Analysis, DNA/methods , Transcription Factors/metabolism
13.
Nat Genet ; 52(12): 1397-1411, 2020 12.
Article in English | MEDLINE | ID: mdl-33169020

ABSTRACT

The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of KMT2D (also known as MLL4) haploinsufficiency in Kabuki syndrome, we found that mixed lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss of function impaired Polycomb-dependent chromatin compartmentalization, altering the nuclear architecture. By releasing the nuclear mechanical stress through inhibition of the mechanosensor ATR, we re-established the mechanosignaling of mesenchymal stem cells and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that, in Kabuki syndrome, the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.


Subject(s)
Abnormalities, Multiple/genetics , Cell Nucleus/physiology , Chromatin/metabolism , Face/abnormalities , Haploinsufficiency/genetics , Hematologic Diseases/genetics , Histone-Lysine N-Methyltransferase/genetics , Vestibular Diseases/genetics , 3T3 Cells , Animals , Cell Line , Cell Lineage/genetics , Chondrocytes/cytology , Chondrogenesis/genetics , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Mechanotransduction, Cellular/physiology , Mesenchymal Stem Cells/cytology , Mice , Osteocytes/cytology , Osteogenesis/genetics , Polycomb-Group Proteins/genetics , Stress, Mechanical
14.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: mdl-32978159

ABSTRACT

Cells respond to starvation by shutting down protein synthesis and by activating catabolic processes, including autophagy, to recycle nutrients. This two-pronged response is mediated by the integrated stress response (ISR) through phosphorylation of eIF2α, which represses protein translation, and by inhibition of mTORC1 signaling, which promotes autophagy also through a stress-responsive transcriptional program. Implementation of such a program, however, requires protein synthesis, thus conflicting with general repression of translation. How is this mismatch resolved? We found that the main regulator of the starvation-induced transcriptional program, TFEB, counteracts protein synthesis inhibition by directly activating expression of GADD34, a component of the protein phosphatase 1 complex that dephosphorylates eIF2α. We discovered that GADD34 plays an essential role in autophagy by tuning translation during starvation, thus enabling lysosomal biogenesis and a sustained autophagic flux. Hence, the TFEB-GADD34 axis integrates the mTORC1 and ISR pathways in response to starvation.


Subject(s)
Autophagy , Starvation , Autophagy/genetics , Eukaryotic Initiation Factor-2/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation/physiology , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
15.
Biomed Opt Express ; 11(8): 4397-4407, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32923051

ABSTRACT

Single-cell analysis techniques are fundamental to study the heterogeneity of cellular populations, which is the basis to understand several biomedical mechanisms. Light-sheet fluorescence microscopy is a powerful technique for obtaining high-resolution imaging of individual cells, but the complexity of the setup and the sample mounting procedures limit its overall throughput. In our work, we present an optofluidic microscope-on-chip with integrated microlenses for light-sheet shaping and with a fluidic microchannel that allows the automatic and continuous delivery of samples of a few tens of microns in size. The device is used to perform dual-color fluorescence analysis and 3D reconstruction of xenograft-derived mouse breast cancer cells.

16.
Cell Rep ; 29(12): 4036-4052.e10, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851932

ABSTRACT

The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients. Here, we found that truncated BRPF1 protein, as found in human adult patients, is able to induce medulloblastoma in adult mice upon SmoM2 activation. Indeed, postmitotic neurons re-entered the cell cycle and proliferated as a result of chromatin remodeling of neurons by BRPF1. Our model of brain cancer explains the onset of a subset of human medulloblastoma in adult individuals where granule neuron progenitors are no longer present.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cerebellar Neoplasms/pathology , DNA-Binding Proteins/metabolism , Hedgehog Proteins/metabolism , Medulloblastoma/pathology , Mutation , Neurons/pathology , Smoothened Receptor/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adult , Animals , Apoptosis , Cell Proliferation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic , Female , Hedgehog Proteins/genetics , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Mice, Nude , Neurons/metabolism , Smoothened Receptor/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Neuron ; 104(2): 271-289.e13, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31515109

ABSTRACT

Mutations in one SETD5 allele are genetic causes of intellectual disability and autistic spectrum disorders. However, the mechanisms by which SETD5 regulates brain development and function remain largely elusive. Herein, we found that Setd5 haploinsufficiency impairs the proliferative dynamics of neural progenitors and synaptic wiring of neurons, ultimately resulting in behavioral deficits in mice. Mechanistically, Setd5 inactivation in neural stem cells, zebrafish, and mice equally affects genome-wide levels of H3K36me3 on active gene bodies. Notably, we demonstrated that SETD5 directly deposits H3K36me3, which is essential to allow on-time RNA elongation dynamics. Hence, Setd5 gene loss leads to abnormal transcription, with impaired RNA maturation causing detrimental effects on gene integrity and splicing. These findings identify SETD5 as a fundamental epigenetic enzyme controlling the transcriptional landscape in neural progenitors and their derivatives and illuminate the molecular events that connect epigenetic defects with neuronal dysfunctions at the basis of related human diseases.


Subject(s)
Brain/embryology , Chromatin/metabolism , Gene Expression Regulation, Developmental/genetics , Histone Code/genetics , Methyltransferases/genetics , Zebrafish Proteins/physiology , Animals , Behavior, Animal , Brain/metabolism , Chromatin Immunoprecipitation Sequencing , Cognition , Epigenesis, Genetic , Histone Methyltransferases/genetics , Methyltransferases/physiology , Mice , Mutation , Neural Stem Cells/metabolism , RNA Splicing/genetics , RNA-Seq , Social Behavior , Transcription Elongation, Genetic , Zebrafish , Zebrafish Proteins/genetics
18.
Cell Death Differ ; 26(9): 1813-1831, 2019 09.
Article in English | MEDLINE | ID: mdl-30538287

ABSTRACT

Achaete-scute homolog 1 gene (ASCL1) is a gene classifier for the proneural (PN) transcriptional subgroup of glioblastoma (GBM) that has a relevant role in the neuronal-like differentiation of GBM cancer stem cells (CSCs) through the activation of a PN gene signature. Besides prototypical ASCL1 PN target genes, the molecular effectors mediating ASCL1 function in regulating GBM differentiation and, most relevantly, subgroup specification are currently unknown. Here we report that ASCL1 not only promotes the acquisition of a PN phenotype in CSCs by inducing a glial-to-neuronal lineage switch but also concomitantly represses mesenchymal (MES) features by directly downregulating the expression of N-Myc downstream-regulated gene 1 (NDRG1), which we propose as a novel gene classifier of MES GBMs. Increasing the expression of ASCL1 in PN CSCs results in suppression of self-renewal, promotion of differentiation and, most significantly, decrease in tumorigenesis, which is also reproduced by NDRG1 silencing. Conversely, both abrogation of ASCL1 expression in PN CSCs and enforcement of NDRG1 expression in either PN or MES CSCs induce proneural-to-mesenchymal transition (PMT) and enhanced mesenchymal features. Surprisingly, ASCL1 overexpression in MES CSCs increases malignant features and gives rise to a neuroendocrine-like secretory phenotype. Altogether, our results propose that the fine interplay between ASCL1 and its target NDRG1 might serve as potential subgroup-specific targetable vulnerability in GBM; enhancing ASCL1 expression in PN GBMs might reduce tumorigenesis, whereas repressing NDRG1 expression might be actionable to hamper the malignancy of GBM belonging to the MES subgroup.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Glioblastoma/genetics , Intracellular Signaling Peptides and Proteins/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Self Renewal/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Signal Transduction
19.
Nat Commun ; 9(1): 3921, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237396

ABSTRACT

The original version of this Article contained an error in the spelling of the author Miriam Gaggianesi, which was incorrectly given as Miriam Giaggianesi. Furthermore, the affiliation details for Gabriella Gaudioso, Valentina Vaira, and Silvano Bosari incorrectly omitted 'Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy'. Finally, the affiliation details for Alice Turdo, Miriam Gaggianesi, Aurora Chinnici and Elisa Lipari were incorrectly given as 'Dipartimento di Biotecnologie Mediche e Medicina Legale Sezione di Biochimica Medica, Facoltà di Medicina e Chirurgia, Policlinico "P.Giaccone", Università di Palermo, Palermo, 90127, Italy'. The correct affiliation is 'Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, 90127, Italy'. These errors have now been corrected in both the PDF and HTML versions of the Article.

20.
Stem Cells Int ; 2018: 4598195, 2018.
Article in English | MEDLINE | ID: mdl-29853913

ABSTRACT

Accumulating evidences indicate that many tumors rely on subpopulations of cancer stem cells (CSCs) with the ability to propagate malignant clones indefinitely and to produce an overt cancer. Of importance, CSCs seem to be more resistant to the conventional cytotoxic treatments, driving tumor growth and contributing to relapse. CSCs can originate from normal committed cells which undergo tumor-reprogramming processes and reacquire a stem cell-like phenotype. Increasing evidences also show how tumor homeostasis and progression strongly rely on the capacity of nontumorigenic cancer cells to dedifferentiate to CSCs. Both tumor microenvironment and epigenetic reprogramming drive such dynamic mechanisms, favoring cancer cell plasticity and tumor heterogeneity. Here, we report new developments which led to an advancement in the CSC field, elucidating the concepts of cancer cell of origin and CSC plasticity in solid tumor initiation and maintenance. We further discuss the main signaling pathways which, under the influence of extrinsic environmental factors, play a critical role in the formation and maintenance of CSCs. Moreover, we propose a review of the main epigenetic mechanisms whose deregulation can favor the onset of CSC features both in tumor initiation and tumor maintenance. Finally, we provide an update of the main strategies that could be applied to target CSCs and cancer cell plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...