Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Microsyst Nanoeng ; 10: 66, 2024.
Article in English | MEDLINE | ID: mdl-38784376

ABSTRACT

This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics. The system integrates the extraction and purification of nucleic acids, followed by amplification via either reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or reverse transcription loop-mediated isothermal amplification (RT-LAMP). By meeting diverse diagnostic and reagent needs, the platform yields testing results that closely align with those of commercial RT-LAMP and RT‒qPCR systems. Notable advantages of our system include its speed and cost-effectiveness. The assay is completed within 28 min, including sample loading (5 min), ribonucleic acid (RNA) extraction (3 min), and RT-LAMP (20 min). The cost of each assay is ≈ $9.5, and this pricing is competitive against that of Food and Drug Administration (FDA)-approved commercial alternatives. Although some RNA loss during on-chip extraction is observed, the platform maintains a potential limit of detection lower than 297 copies. Portability makes the system particularly useful in environments where centralized laboratories are either unavailable or inconveniently located. Another key feature is the platform's versatility, allowing users to choose between RT‒qPCR or RT‒LAMP tests based on specific requirements.

2.
Bratisl Lek Listy ; 124(2): 84-91, 2024.
Article in English | MEDLINE | ID: mdl-38219060

ABSTRACT

OBJECTIVES: Cisplatin is a widely used anticancer drug for the treatment of many solid cancers. DNA damage is thought to be the key mechanism of cisplatin's anticancer activity. However, cisplatin may also affect cellular metabolism. The aim of this study was to determine the effect of cisplatin on the types of ATP production (OXPHOS versus glycolysis) and their rate in prostate cancer cells and to determine the potentially protective effect of autophagy and amino acids during cisplatin treatment. We also wanted to investigate the potential synergy between the metabolic effects of cisplatin on ATP production and the inhibition of autophagy. METHODS: Cisplatin treatment can significantly affect the metabolism of cancer cells. Important metabolic pathways can be altered, leading to changes in energy production and nutrient utilization. Autophagy and amino acid pool modulations can serve as protective mechanisms significantly affecting tumor cell survival under metabolic stress caused by anticancer treatment. By enabling the recycling of amino acids, autophagy helps cancer cells maintain cellular homeostasis and overcome nutrient limitations. Thus, inhibition of autophagy could have a supportive effect on the metabolic effects of cisplatin. RESULTS: After cisplatin treatment, ATP production by way of OXPHOS was significantly decreased in 22Rv1 and PC-3 cells. On the other hand, ATP production by glycolysis was not significantly affected in 22Rv1 cells. DU145 cells with dysfunctional autophagy were the most sensitive to cisplatin treatment and showed the lowest ATP production. However, short-term autophagy inhibition (24h) by autophinib or SAR405 in 22Rv1 and PC-3 cells did not alter the effect of cisplatin on ATP production. Levels of some amino acids (arginine, methionine) significantly affected the fitness of cancer cells. CONCLUSION: Persistent defects of autophagy can affect the metabolic sensitivity of cancer cells due to interference with arginine metabolism. Amino acids contained in the culture medium had an impact on the overall effect of cisplatin (Fig. 3, Ref. 38).


Subject(s)
Cisplatin , Prostatic Neoplasms , Pyrazoles , Pyridines , Pyrimidines , Pyrimidinones , Male , Humans , Cisplatin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Autophagy , Cell Line, Tumor , Amino Acids/pharmacology , Amino Acids/metabolism , Adenosine Triphosphate/pharmacology , Arginine
3.
Heliyon ; 9(11): e21497, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027737

ABSTRACT

The Kékfrankos is the most frequently cultivated wine grape in Hungary, with a significant national and regional impact, resulting in considerable amounts of byproducts (e.g. pomace, seeds). To the best of our knowledge no research has been conducted on the antioxidant and antibacterial properties of its seed extracts (GSE). A novel apporach of applying direct microwave treatment on grape seeds was implemented for the first time to enhance antioxidant and antimicrobial properties of GSE. Antioxidant properties were assayed using the DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power) and TPC (Folin-Ciocâlteu's Total Polyphenol Content) methods. Profile and content of polyphenols was studied using high-performance liquid chromatography/tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Antibacterial properties were evaluated using Gram-positive Staphylococcus aureus (SA), methicillin-resistant Staphylococcus aureus (ST239) (MRSA) and Gram-negative Escherichia coli (EC) bacteria strains. Results proved that the mild direct microwave treatment of grape seeds significantly increased total polyphenol, (+)-catechin, (-)-epicatechin as well as antioxidant capacity levels by 20-30 % compared to untreated samples and resulted the best antibacterial properties based on bacterial growth curves (SA and MRSA: 0.015625 mg/mL, EC: 0.25 mg/mL). Results justify the importance of further pharmacological investigations on Kékfrankos grape seed extracts and that the direct microwave treatment of grape seeds is an innovative approach for the fast and cost efficient improvement of the antibacterial properties of grape seed extracts.

4.
Mater Today Bio ; 19: 100570, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36824411

ABSTRACT

The combination of in ovo and ex ovo chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the in vivo performance has barely scratched the surface. Herein, we used CAM assay as in vivo model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft. PtNPs showed a higher efficiency to inhibit the tumor growth and metastasis compared to CDDP. The amino acids profiling in the MDA-MB-231 â€‹cells revealed that the PtNPs had an overall depleting effect on the amino acids content. Noteworthy, more side effects to amino acid metabolism were deduced from the depletion of the amino acids in tumor, brain, and liver upon CDDP treatment. Different sets of enzymes of the tricarboxylic acid (TCA) cycle were targeted by PtNPs and CDDP, and while mRNA encoding multiple enzymes was downregulated by PtNPs, the treatment with CDDP affected only two TCA enzymes, indicating a different mechanism of action. Taken together, CAM assay represents and invaluable model, demonstrating the PtNPs capability of repressing angiogenesis, decrease amino acid contents and disrupt the TCA cycle.

5.
Front Oncol ; 12: 986045, 2022.
Article in English | MEDLINE | ID: mdl-36212465

ABSTRACT

Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.

6.
Anal Methods ; 14(39): 3824-3830, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36193785

ABSTRACT

Electrochemical detection systems that provide either quantitative or sample-to-answer information are promising for various analytical applications in the emerging field of point-of-care testing (POCT). Nevertheless, in mobile POC systems optical detection is currently more preferred compared to electrochemical detection due to the insufficient robustness of electrochemical detection approaches toward "real world" use. Over the last couple of decades, screen-printed electrodes (SPEs) have emerged as a simple and low-cost electrochemical detection platform. Here, we report, firstly and solely, a novel benchtop system for the processing of electrochemical methods on SPE platforms. Our solution prevents operator errors from occurring while processing and testing SPEs, achieves an automatic processing of more than 300 electrodes per day and enables comparative testing due to the presence of two simultaneous working channels; furthermore, the SPEs used can be stored in specially-designed cartridges. This novel device helps to overcome the major disadvantages in processing SPE technology, such as a low level of automation and issues with process repeatability, making this technology more efficient and enabling faster growth in industry.


Subject(s)
Electrochemical Techniques , Electrochemical Techniques/methods , Electrodes
7.
Analyst ; 147(14): 3131-3154, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35713185

ABSTRACT

The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) directly or indirectly affects every individual worldwide. The fight against SARS-CoV-2 is based on the rapid and accurate diagnosis and subsequent isolation of infected individuals. Therefore, the demands for the scientific development of diagnostic methods for the confirmation of SARS-CoV-2 are enormous. Currently, reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is the main method used for detecting viruses, including SARS-CoV-2, and is considered the gold standard for coronavirus disease 2019 (COVID-19) identification. However, various alternatives have been investigated due to the time and cost demands of this method or to shortages of reagents. In this review, we focus on matrix-assisted laser desorption and ionisation with time-of-flight analyser mass spectrometry (MALDI-TOF MS) techniques as potential tools for the diagnosis of viruses with an emphasis on SARS-CoV-2. MALDI-TOF is commonly used in clinical laboratories for bacterial characterization and identification, but in the field of clinical virology, MALDI-TOF remains only a promising technology for routine diagnosis. This review provides an overview of the development of clinical virology from the point of view of using MALDI-TOF for virus identification and as a possible diagnostic tool for SARS-CoV-2 detection. In addition, this review summarizes the current state of standard methods for virus diagnostics including the preparation of clinical samples.


Subject(s)
COVID-19 , Viruses , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2 , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
8.
Int J Biol Macromol ; 203: 583-592, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35090942

ABSTRACT

Here we developed a powerful tool for comprehensive data collection and mapping of molecular and elemental signatures in the Melanoma-bearing Libechov Minipig (MeLiM) model. The combination of different mass spectrometric methods allowed for detail investigation of specific melanoma markers and elements and their spatial distribution in tissue sections. MALDI-MSI combined with HPLC-MS/MS analyses resulted in identification of seven specific proteins, S100A12, CD163, MMP-2, galectin-1, tenascin, resistin and PCNA that were presented in the melanoma signatures. Furthermore, the ICP-MS method allowed for spatial detection of zinc, calcium, copper, and iron elements linked with the allocation of the specific binding proteins.


Subject(s)
Melanoma , Tandem Mass Spectrometry , Animals , Melanoma/metabolism , Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Swine , Swine, Miniature
9.
J Am Chem Soc ; 143(40): 16486-16501, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34477370

ABSTRACT

Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and ß-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 µs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.


Subject(s)
Metallothionein
11.
Trends Analyt Chem ; 136: 116192, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33487783

ABSTRACT

Coronavirus disease (COVID-19) caused by SARS-CoV-2 has spread since the end of 2019 and has resulted in a pandemic with unprecedented socioeconomic consequences. This situation has created enormous demand for the improvement of current diagnostic methods and the development of new diagnostic methods for fast, low-cost and user-friendly confirmation of SARS-CoV-2 infection. This critical review focuses on viral electrochemical biosensors that are promising for the development of rapid medical COVID-19 diagnostic tools. The molecular biological properties of SARS-CoV-2 as well as currently known biochemical attributes of infection necessary for biosensor development are outlined. The advantages and drawbacks of conventional diagnostic methods, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), are critically discussed. Electrochemical biosensors focusing on viral nucleic acid and whole viral particle detection are highlighted and discussed in detail. Finally, future perspectives on viral electrochemical biosensor development are briefly mentioned.

12.
Toxins (Basel) ; 14(1)2021 12 23.
Article in English | MEDLINE | ID: mdl-35050987

ABSTRACT

Bees originally developed their stinging apparatus and venom against members of their own species from other hives or against predatory insects. Nevertheless, the biological and biochemical response of arthropods to bee venom is not well studied. Thus, in this study, the physiological responses of a model insect species (American cockroach, Periplaneta americana) to honeybee venom were investigated. Bee venom toxins elicited severe stress (LD50 = 1.063 uL venom) resulting in a significant increase in adipokinetic hormones (AKHs) in the cockroach central nervous system and haemolymph. Venom treatment induced a large destruction of muscle cell ultrastructure, especially myofibrils and sarcomeres. Interestingly, co-application of venom with cockroach Peram-CAH-II AKH eliminated this effect. Envenomation modulated the levels of carbohydrates, lipids, and proteins in the haemolymph and the activity of digestive amylases, lipases, and proteases in the midgut. Bee venom significantly reduced vitellogenin levels in females. Dopamine and glutathione (GSH and GSSG) insignificantly increased after venom treatment. However, dopamine levels significantly increased after Peram-CAH-II application and after co-application with bee venom, while GSH and GSSG levels immediately increased after co-application. The results suggest a general reaction of the cockroach body to bee venom and at least a partial involvement of AKHs.


Subject(s)
Bee Venoms/adverse effects , Hemolymph/drug effects , Immunity, Innate , Insect Hormones/pharmacology , Oligopeptides/pharmacology , Periplaneta/immunology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Animals , Central Nervous System/chemistry , Central Nervous System/drug effects , Hemolymph/chemistry , Periplaneta/chemistry , Periplaneta/drug effects , Pyrrolidonecarboxylic Acid/pharmacology
13.
J Proteome Res ; 20(1): 776-785, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32924499

ABSTRACT

Identification of metal-binding sites in proteins and understanding metal-coupled protein folding mechanisms are aspects of high importance for the structure-to-function relationship. Mass spectrometry (MS) has brought a powerful adjunct perspective to structural biology, obtaining from metal-to-protein stoichiometry to quaternary structure information. Currently, the different experimental and/or instrumental setups usually require the use of multiple data analysis software, and in some cases, they lack some of the main data analysis steps (MS processing, scoring, identification). Here, we present a comprehensive data analysis pipeline that addresses charge-state deconvolution, statistical scoring, and mass assignment for native MS, bottom-up, and native top-down with emphasis on metal-protein complexes. We have evaluated all of the approaches using assemblies of increasing complexity, including free and chemically labeled proteins, from low- to high-resolution MS. In all cases, the results have been compared with common software and proved how MetaOdysseus outperformed them.


Subject(s)
Cysteine , Proteins , Binding Sites , Mass Spectrometry , Software
14.
Talanta ; 224: 121813, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33379038

ABSTRACT

The here presented work is focused on the development of a method for detection of microbial contamination of food based on uracil-selective synthetic receptors. Because uracil may serve as an indicator of bacterial contamination, its selective and on-site detection may prevent spreading of foodborne diseases. The synthetic receptors were created by molecular imprinting. Molecularly imprinted polymers for selective uracil isolation were prepared by a non-covalent imprinting method using dopamine as a functional monomer. Detection of isolated uracil was performed by capillary electrophoresis with absorption detection (λ - 260 nm). The conditions of preparation of molecularly imprinted polymers, their binding properties, adsorption kinetics and selectivity were investigated in detail. Furthermore, the prepared polymer materials were used for selective isolation and detection of uracil from complex samples as tomato products by miniaturized electrophoretic system suggesting the potential of in situ analysis of real samples.


Subject(s)
Molecular Imprinting , Receptors, Artificial , Adsorption , Polymers , Uracil
15.
Molecules ; 25(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287430

ABSTRACT

Respiratory infections are a real threat for humans, and therefore the pig model is of interest for studies. As one of a case for studies, Actinobacillus pleuropneumoniae (APP) caused infections and still worries many pig breeders around the world. To better understand the influence of pathogenic effect of APP on a respiratory system-lungs and tracheobronchial lymph nodes (TBLN), we aimed to employ matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF MSI). In this study, six pigs were intranasally infected by APP and two were used as non-infected control, and 48 cryosections have been obtained. MALDI-TOF MSI and immunohistochemistry (IHC) were used to study spatial distribution of infectious markers, especially interleukins, in cryosections of porcine tissues of lungs (necrotic area, marginal zone) and tracheobronchial lymph nodes (TBLN) from pigs infected by APP. CD163, interleukin 1ß (IL­1ß) and a protegrin-4 precursor were successfully detected based on their tryptic fragments. CD163 and IL­1ß were confirmed also by IHC. The protegrin-4 precursor was identified by MALDI-TOF/TOF directly on the tissue cryosections. CD163, IL­1ß and protegrin­4 precursor were all significantly (p < 0.001) more expressed in necrotic areas of lungs infected by APP than in marginal zone, TBLN and in control lungs.


Subject(s)
Biomarkers/metabolism , Bronchi/metabolism , Lung/metabolism , Lymph Nodes/metabolism , Respiratory Tract Infections/metabolism , Actinobacillus Infections/metabolism , Actinobacillus Infections/microbiology , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antimicrobial Cationic Peptides/metabolism , Interleukin-1beta/metabolism , Receptors, Cell Surface/metabolism , Respiratory Tract Infections/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Swine
16.
Int J Mol Sci ; 21(21)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114430

ABSTRACT

Dietary supplementation with polyunsaturated fatty acids (PUFA) n-3 can affect cutaneous wound healing; however, recent findings demonstrate the variable extent of their influence on the quality of healing. Here, we compare the effect of several dietary oils, containing different levels of PUFA n-3 and PUFA n-6, on wound healing in the rat model. Rats were fed the feed mixture with 8% palm oil (P), safflower oil (S), fish oil (F) or Schizochytrium microalga extract (Sch) and compared to the animals fed by control feed mixture (C). Dorsal full-thickness cutaneous excisions were performed after 52 days of feeding and skin was left to heal for an additional 12 days. Histopathological analysis of skin wounds was performed, including immune cells immunolabeling and the determination of hydroxyproline amount as well as gene expression analyses of molecules contributing to different steps of the healing. Matrix-assisted-laser-desorption-ionization mass-spectrometry-imaging (MALDI-MSI) was used to determine the amount of collagen α-1(III) chain fragment in healing samples. Treatment by Schizochytrium extract resulted in decrease in the total wound area, in contrast to the safflower oil group where the size of the wound was larger when comparing to control animals. Diet with Schizochytrium extract and safflower oils displayed a tendency to increase the number of new vessels. The number of MPO-positive cells was diminished following any of oil treatment in comparison to the control, but their highest amount was found in animals with a fish oil diet. On the other hand, the number of CD68-positive macrophages was increased, with the most significant enhancement in the fish oil and safflower oil group. Hydroxyproline concentration was the highest in the safflower oil group but it was also enhanced in all other analyzed treatments in comparison to the control. MALDI-MSI signal intensity of a collagen III fragment decreased in the sequence C > S > Sch > P > F treatment. In conclusion, we observed differences in tissue response during healing between dietary oils, with the activation of inflammation observed following the treatment with oil containing high eicosapentaenoic acid (EPA) level (fish oil) and enhanced healing features were induced by the diet with high content of docosahexaenoic acid (DHA, Schizochytrium extract).


Subject(s)
Dietary Fats, Unsaturated/administration & dosage , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-6/analysis , Skin/injuries , Wound Healing/drug effects , Animals , CD8 Antigens/metabolism , Collagen Type III/metabolism , Dietary Fats, Unsaturated/pharmacology , Disease Models, Animal , Fish Oils/administration & dosage , Fish Oils/chemistry , Fish Oils/pharmacology , Indoles/chemistry , Macrophages/immunology , Male , Palm Oil/administration & dosage , Palm Oil/chemistry , Palm Oil/pharmacology , Rats , Safflower Oil/administration & dosage , Safflower Oil/chemistry , Safflower Oil/pharmacology , Skin/drug effects , Skin/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Anal Chem ; 92(19): 12950-12958, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32786475

ABSTRACT

Here, using human metallothionein (MT2) as an example, we describe an improved strategy based on differential alkylation coupled to MS, assisted by zinc probe monitoring, for identification of cysteine-rich binding sites with nanomolar and picomolar metal affinity utilizing iodoacetamide (IAM) and N-ethylmaleimide reagents. We concluded that an SN2 reaction provided by IAM is more suitable to label free Cys residues, avoiding nonspecific metal dissociation. Afterward, metal-bound Cys can be easily labeled in a nucleophilic addition reaction after separation by reverse-phase C18 at acidic pH. Finally, we evaluated the efficiency of the method by mapping metal-binding sites of Zn7-xMT species using a bottom-up MS approach with respect to metal-to-protein affinity and element(al) resolution. The methodology presented might be applied not only for MT2 but to identify metal-binding sites in other Cys-containing proteins.


Subject(s)
Metallothionein/chemistry , Zinc/analysis , Binding Sites , Humans , Hydrogen-Ion Concentration , Metallothionein/genetics
18.
J Anim Sci Biotechnol ; 11: 59, 2020.
Article in English | MEDLINE | ID: mdl-32528676

ABSTRACT

BACKGROUND: The high doses of zinc oxide (ZnO) administered orally to piglets for the prevention of diarrhea and increase of growth rate can contaminate pig farms and the surrounding environment. Therefore, there is a need to find a replacement of high doses of dietary ZnO with an equally effective alternative. In the present study, the effect of two formulations of zinc phosphate-based nanoparticles (ZnA and ZnC NPs) on growth performance, intestinal microbiota, antioxidant status, and intestinal and liver morphology was evaluated. A total of 100 weaned piglets were randomly divided into 10 equal groups with the base diet (control) or the base diet supplemented with ZnA, ZnC, or ZnO at concentrations 500, 1000, and 2000 mg Zn per kilogram of diet. Supplements were given to animals for 10 days. Fecal samples were collected on day 0, 5, 10 and 20. At the end of the treatment (day 10), three piglets from each group were sacrificed and analyzed. RESULTS: Comparing to that of control, the significantly higher piglet weight gain was observed in all piglet groups fed with ZnA (P < 0.05). Differences in the total aerobic bacteria and coliform counts in piglet feces after NPs supplementation compared to that of control and ZnO groups were also found (P < 0.05). The majority of aerobic culturable bacteria from the feces represented Escherichia (28.57-47.62%), Enterococcus (3.85-35.71%), and Streptococcus (3.70-42.31%) spp. A total of 542 Escherichia coli isolates were screened for the virulence genes STa, STb, Stx2, F4, and F18. The substantial occurrence of E. coli virulence factors was found on day 5, mainly in fimbrillary antigen and thermostable toxins, except for piglets fed by ZnC. Zn treatment decreased Zn blood levels in piglets fed with ZnO and ZnA (500 mg/kg) and increased in ZnC (2000 mg/kg) compared to that of control (P < 0.05). The antioxidant status of piglets was affected only by ZnA. While some changes in the liver and the intestinal morphology of piglets with NPs were observed, none were serious as reflected by the normal health status and increased weigh gain performance. CONCLUSIONS: Our results indicate that ZnA NPs have a positive effect on the piglet growth performance even at the lowest concentration. The prevalence of E. coli virulence factors was lowest in pigs supplemented with ZnC. Zinc phosphate-based nanoparticles may be an effective alternative to ZnO.

19.
Biosens Bioelectron ; 156: 112109, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32275576

ABSTRACT

The design and application of an inkjet-printed electrochemically reduced graphene oxide microelectrode for HT-2 mycotoxin immunoenzymatic biosensing is reported. A water-based graphene oxide ink was first formulated and single-drop line working microelectrodes were inkjet-printed onto poly(ethylene 2,6-naphthalate) substrates, with dimensions of 78 µm in width and 30 nm in height after solvent evaporation. The printed graphene oxide microelectrodes were electrochemically reduced and characterized by Raman and X-ray photoelectron spectroscopies in addition to microscopies. Through optimization of the electrochemical reduction parameters, differential pulse voltammetry were performed to examine the sensing of 1-naphthol (1-N), where it was revealed that reduction times had significant effects on electrode performance. The developed microelectrodes were then used as an immunoenzymatic biosensor for the detection of HT-2 mycotoxin based on carbodiimide linking of the microelectrode surface and HT-2 toxin antigen binding fragment of antibody (anti-HT2 (10) Fab). The HT-2 toxin and anti-HT2 (10) Fab reaction was reported by anti-HT2 immune complex single-chain variable fragment of antibody fused with alkaline phosphatase (anti-IC-HT2 scFv-ALP) which is able to produce an electroactive reporter - 1-N. The biosensor showed detection limit of 1.6 ng ∙ mL-1 and a linear dynamic range of 6.3 - 100.0 ng ∙ mL-1 within a 5 min incubation with 1-naphthyl phosphate (1-NP) substrate.


Subject(s)
Biosensing Techniques/instrumentation , Graphite/chemistry , T-2 Toxin/analogs & derivatives , Antibodies, Immobilized/chemistry , Electrochemical Techniques/instrumentation , Equipment Design , Immunoenzyme Techniques/instrumentation , Microelectrodes , Oxidation-Reduction , Reagent Strips/analysis , T-2 Toxin/analysis
20.
Bioelectrochemistry ; 134: 107501, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32229323

ABSTRACT

We focused on the application of mass spectrometry and electrochemical methods combined with a chemometric analysis for the characterization of partially metallothionein-3 species. The results showed decreased Cat1 and Cat2 signals for the Zn(II)-loaded MT3 species with respect to the metal-free protein, which might be explained by the arrangement of tetrahedral metal-thiolate coordination environments and the formation of metal clusters. Moreover, there was a decrease in the Cat1 and Cat2 signals, and a plateau was reached with 4-5 Zn(II) ions that corresponded to the formation of the C-terminal α-domain. Regarding the Zn7-xMT3 complexes, we observed three different electrochemical behaviours for the Zn1-2MT3, Zn3-6MT3 and Zn7MT3 species. The difference for Zn1-2MT3 might be explained by the formation of independent ZnS4 cores in this stage that differ with respect to the formation of ZnxCysy clusters with an increased Zn(II) loading. The binding of the third Zn(II) ion to MT3 resulted in high sample heterogeneity due the co-existence of Zn3-6MT3. Finally, the Zn7MT3 protein showed a third type of behaviour. The fact that there were no free Cys residues might explain this phenomenon. Thus, this research identifies the major proteins responsible for zinc buffering in the cell.


Subject(s)
Electrochemistry/methods , Nerve Tissue Proteins/chemistry , Zinc/chemistry , Apoproteins/chemistry , Humans , Mass Spectrometry , Metallothionein 3
SELECTION OF CITATIONS
SEARCH DETAIL
...