Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38543244

ABSTRACT

Neurodegenerative diseases, such as Alzheimer's and Parkinson's, affect a wide variety of the population and pose significant challenges with progressive and irreversible neural cell loss. The limitations of brain-targeting therapies and the unclear molecular mechanisms driving neurodegeneration hamper the possibility of developing successful treatment options. Thus, nanoscale drug delivery platforms offer a promising solution. This paper explores and compares lipidic nanoparticles, extracellular vesicles (EVs), and hybrid liposomal-EV nanoplatforms as advanced approaches for targeted delivery to combat neurodegeneration. Lipidic nanoparticles are well-characterized platforms that allow multi-drug loading and scalable production. Conversely, EVs offer the ability of selectively targeting specific tissues and high biocompatibility. The combination of these two platforms in one could lead to promising results in the treatment of neurodegeneration. However, many issues, such as the regulatory framework, remain to be solved before these novel products are translated into clinical practice.

2.
Adv Healthc Mater ; : e2302499, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38247228

ABSTRACT

Preclinical models are essential research tools before novel therapeutic or diagnostic methods can be applied to humans. These range from in vitro cell monocultures to vastly more complex animal models, but clinical translation to humans often fails to deliver significant results. Three-dimensional (3D) organoid systems are being increasingly studied to establish physiologically relevant in vitro platforms in a trade-off between the complexity of the research question and the complexity of practical experimental setups. The sensitivity and precision of analytical tools are yet another limiting factors in what can be investigated, and mass spectrometry (MS) is one of the most powerful analytical techniques available to the scientific community. Its innovative use to spatially resolve biological samples has opened many research avenues in the field of MS imaging (MSI). Here, this work aims to explore the current scientific landscape in the application of MSI on organoids, with an emphasis on their combined potential to facilitate and improve preclinical studies.

3.
Biomedicines ; 11(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38137534

ABSTRACT

Agitation is one of the most eminent characteristics of neuropsychiatric symptoms (NPS) affecting people living with Alzheimer's and Dementia and has serious consequences for patients and caregivers. The current consensus is that agitation results, in part, from the disruption of ascending monoamine regulators of cortical circuits, especially the loss of serotonergic activity. It is believed that the first line of treatment for these conditions is selective serotonin reuptake inhibitors (SSRIs), but these are effective in only about 40% of patients. Person-specific biomarkers, for example, ones based on in vitro iPSC-derived models of serotonin activity, which predict who with Agitation responds to an SSRI, are a major clinical priority. Here, we report the generation of human-induced pluripotent stem cells (iPSCs) from a 74-year-old AD patient, the homozygous APOE ε4/ε4 carrier, who developed Agitation. His iPSCs were reprogrammed from peripheral blood mononuclear cells (PBMCs) using the transient expression of pluripotency genes. These display typical iPSC characteristics that are karyotypically normal and attain the capacity to differentiate into three germ layers. The newly patient-derived iPSC line offers a unique resource to investigate the underlying mechanisms associated with neuropsychiatric symptom progression in AD.

4.
Cells ; 12(15)2023 08 02.
Article in English | MEDLINE | ID: mdl-37566069

ABSTRACT

The recent advances in creating pluripotent stem cells from somatic cells and differentiating them into a variety of cell types is allowing us to study them without the caveats associated with disease-related changes. We generated induced Pluripotent Stem Cells (iPSCs) from eight Alzheimer's disease (AD) patients and six controls and used lentiviral delivery to differentiate them into excitatory glutamatergic neurons. We then performed RNA sequencing on these neurons and compared the Alzheimer's and control transcriptomes. We found that 621 genes show differences in expression levels at adjusted p < 0.05 between the case and control derived neurons. These genes show significant overlap and directional concordance with genes reported from a single-cell transcriptome study of AD patients; they include five genes implicated in AD from genome-wide association studies and they appear to be part of a larger functional network as indicated by an excess of interactions between them observed in the protein-protein interaction database STRING. Exploratory analysis with Uniform Manifold Approximation and Projection (UMAP) suggests distinct clusters of patients, based on gene expression, who may be clinically different. Our research outcomes will enable the precise identification of distinct biological subtypes among individuals with Alzheimer's disease, facilitating the implementation of tailored precision medicine strategies.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Transcriptome/genetics , Genome-Wide Association Study , Neurons/metabolism
5.
Adv Exp Med Biol ; 1423: 281-287, 2023.
Article in English | MEDLINE | ID: mdl-37525056

ABSTRACT

The human brain is the organ with the most lipids after adipose tissues. The rich heterogeneity of the neural lipidome is being actively investigated with the aim of shedding new light into the physiological and pathological roles these compounds play in the brain. This is particularly important for the study of increasingly common neurodegenerative pathologies, such as Alzheimer's disease (AD), whose underlying mechanisms are still insufficiently understood and for which there is no cure. The present text dives into the current knowledge of the lipid composition of the brain, with a particular focus on the application of lipid profiling to AD research.


Subject(s)
Alzheimer Disease , Humans , Brain , Lipids
6.
Eur J Pharm Biopharm ; 182: 32-40, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470521

ABSTRACT

Chronic hepatic diseases often compromise liver function and are directly responsible for up to two million yearly deaths world-wide. There are yet no treatment options to solve this global medical need. Experimental drugs elafibranor (Ela) and obeticholic acid (OA) appeared promising in numerous earlier studies, but they recently struggled to show significant benefits in patients. Little is known on the drugs' impact on hepatic stellate cells (HSCs), key players in liver fibrogenesis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs, including differences in their extracellular vesicles (EVs). Here, we newly formulated Ela and OA in PPC liposomes and evaluated their performance on the LX-2 (human HSC) cell line through our rigorous methods of EV-analysis, now expanded to include lipidomics. We show that direct treatments with Ela and OA increase EV-associated secreted protein acidic and cysteine rich (SPARC), a matricellular protein overexpressed in fibrogenesis. However, our results suggest that this potentially damaging drugs' action to HSCs could be mitigated when delivering them with lipid-based formulations, most notably with a PPC-rich phospholipid inducing specific changes in the cellular and EV phospholipid composition. Thus, EV analysis substantially deepens evaluations of drug performances and delivery strategies.


Subject(s)
Extracellular Vesicles , Hepatic Stellate Cells , Humans , Liver Cirrhosis/drug therapy , Phospholipids/metabolism , Extracellular Vesicles/metabolism , Osteonectin/metabolism
7.
Commun Biol ; 5(1): 1155, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310239

ABSTRACT

Uncovering the complex cellular mechanisms underlying hepatic fibrogenesis could expedite the development of effective treatments and noninvasive diagnosis for liver fibrosis. The biochemical complexity of extracellular vesicles (EVs) and their role in intercellular communication make them an attractive tool to look for biomarkers as potential alternative to liver biopsies. We developed a solid set of methods to isolate and characterize EVs from differently treated human hepatic stellate cell (HSC) line LX-2, and we investigated their biological effect onto naïve LX-2, proving that EVs do play an active role in fibrogenesis. We mined our proteomic data for EV-associated proteins whose expression correlated with HSC treatment, choosing the matricellular protein SPARC as proof-of-concept for the feasibility of fluorescence nanoparticle-tracking analysis to determine an EV-based HSCs' fibrogenic phenotype. We thus used EVs to directly evaluate the efficacy of treatment with S80, a polyenylphosphatidylcholines-rich lipid, finding that S80 reduces the relative presence of SPARC-positive EVs. Here we correlated the cellular response to lipid-based antifibrotic treatment to the relative presence of a candidate protein marker associated with the released EVs. Along with providing insights into polyenylphosphatidylcholines treatments, our findings pave the way for precise and less invasive diagnostic analyses of hepatic fibrogenesis.


Subject(s)
Extracellular Vesicles , Proteomics , Humans , Hepatic Stellate Cells/metabolism , Extracellular Vesicles/metabolism , Liver Cirrhosis/diagnosis , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Biomarkers/metabolism , Lipids , Osteonectin/metabolism
8.
Front Pharmacol ; 13: 900610, 2022.
Article in English | MEDLINE | ID: mdl-36016560

ABSTRACT

RNA-delivery is a promising tool to develop therapies for difficult to treat diseases such as neurological disorders, by silencing pathological genes or expressing therapeutic proteins. However, in many cases RNA delivery requires a vesicle that could effectively protect the molecule from bio-degradation, bypass barriers i.e., the blood brain barrier, transfer it to a targeted tissue and efficiently release the RNA inside the cells. Many vesicles such as viral vectors, and polymeric nanoparticles have been mentioned in literature. In this review, we focus in the discussion of lipid-based advanced RNA-delivery platforms. Liposomes and lipoplexes, solid lipid nanoparticles and lipid nanoparticles are the main categories of lipidic platforms for RNA-delivery to the central nervous systems (CNS). A variety of surface particles' modifications and routes of administration have been studied to target CNS providing encouraging results in vivo. It is concluded that lipid-based nanoplatforms will play a key role in the development of RNA neuro-therapies.

9.
Biochim Biophys Acta Gen Subj ; 1865(4): 129559, 2021 04.
Article in English | MEDLINE | ID: mdl-32084396

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are a diverse group of membrane-bound nanovesicles potentially released by every cell. With the liver's unique ensemble of cells and its fundamental physiological tasks, elucidating the role of EV-mediated hepatic cellular crosstalk and their role in different pathologies has been gaining the attention of many scientists. SCOPE OF REVIEW: The present review shifts the perspective into practice: we aim to critically discuss the methods used to purify and to biochemically analyse EVs from specific liver resident cells, including hepatocytes, hepatic stellate cells, cholangiocytes, liver sinusoidal endothelial cells, Kupffer cells, liver stem cells. The review offers a reference guide to current approaches. MAJOR CONCLUSIONS: Strategies for EV isolation and characterization are as varied as the research groups performing them. We present main advantages and disadvantages for the methods, highlighting common causes for concern, such as FBS handling, reporting of cell viability, EV yield and storage, differences in differential centrifugations, suboptimal method descriptions, and method transferability. We both looked at how adaptable the research between human and rodent cells in vitro is, and also assessed how well either of them translates to ex vivo settings. GENERAL SIGNIFICANCE: We reviewed methodological practices for the isolation and analysis of liver-derived EVs, making a cell type specific user guide that shows where to start, what has worked so far and to what extent. We critically discussed room for improvement, placing a particular focus on working towards a potential standardization of methods.


Subject(s)
Extracellular Vesicles/chemistry , Liver/cytology , Animals , Centrifugation/methods , Endothelial Cells/chemistry , Endothelial Cells/cytology , Hepatic Stellate Cells/chemistry , Hepatic Stellate Cells/cytology , Hepatocytes/chemistry , Hepatocytes/cytology , Humans , Kupffer Cells/chemistry , Kupffer Cells/cytology , Liver/chemistry , Stem Cells/chemistry , Stem Cells/cytology
10.
Pharmaceutics ; 11(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842373

ABSTRACT

The pivotal role of hepatic stellate cells (HSCs) in orchestrating the bidirectional process of progression and regression of liver fibrosis makes them an ideal target for exploring new antifibrotic therapies. Essential phospholipids (EPLs), with their polyenylphosphatidylcholine (PPC) fraction, either alone or combined with other hepatoprotective substances such as silymarin, are recommended in hepatic impairment, but a scientific rationale for their use is still lacking. Herein, we compared the ability of EPLs to restore quiescent-like features in HSCs with that of dilinoleoylphosphatidylcholine (DLPC), PPC fraction's main component. Specifically, we screened at the cellular level the antifibrotic effects of PPC formulations in the presence and absence of silymarin, by using LX-2 cells (pro-fibrogenic HSCs) and by assessing the main biochemical hallmarks of the activated and deactivated states of this cell line. We also proved the formulations' direct effect on the motional order of cell membranes of adherent cells. LX-2 cells, examined for lipid droplets as a quiescence marker, showed that PPCs led to a more prominent deactivation than DLPC. This result was confirmed by a reduction of collagen and α-SMA expression, and by a profound alteration in the cell membrane fluidity. PPC-silymarin formulations deactivated HSCs with a significant synergistic effect. The remarkable bioactivity of PPCs in deactivating fibrogenic HSCs paves the way for the rational design of new therapeutics aimed at managing hepatic fibrosis.

11.
Chemistry ; 23(20): 4765-4769, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28256754

ABSTRACT

Extracellular detection of endogeneous analytes (e.g., superoxide) can provide important insights into mechanisms of homeostasis and diseases, such as tumorigenesis. A ratiometric probe with a fluorescent reference and an analyte-specific switch-on dye was developed. Detection of ROS in the extracellular milieu was ensured by connecting the two fluorophores with a modular peptide-nucleic-acid-based linker. The ROS-sensing ability was assessed and validated in cell-free assays and in cell culture.


Subject(s)
Fluorescent Dyes/chemistry , Superoxides/analysis , Caco-2 Cells , Fluorescence Resonance Energy Transfer , Humans , Microscopy, Fluorescence , Reactive Oxygen Species/analysis , Reactive Oxygen Species/chemistry , Superoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...