Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 14(1): 8926, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637558

ABSTRACT

To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Middle Aged , Aged , Angiotensin-Converting Enzyme 2 , BNT162 Vaccine , Prospective Studies , COVID-19/prevention & control , Canada/epidemiology , Antibodies , ChAdOx1 nCoV-19 , RNA, Messenger , Antibodies, Viral , Vaccination
2.
Infect Genet Evol ; 113: 105484, 2023 09.
Article in English | MEDLINE | ID: mdl-37531976

ABSTRACT

OBJECTIVES: Clustering pathogen sequence data is a common practice in epidemiology to gain insights into the genetic diversity and evolutionary relationships among pathogens. We can find groups of cases with a shared transmission history and common origin, as well as identifying transmission hotspots. Motivated by the experience of clustering SARS-CoV-2 cases using whole genome sequence data during the COVID-19 pandemic to aid with public health investigation, we investigated how differences in epidemiology and sampling can influence the composition of clusters that are identified. METHODS: We performed genomic clustering on simulated SARS-CoV-2 outbreaks produced with different transmission rates and levels of genomic diversity, along with varying the proportion of cases sampled. RESULTS: In single outbreaks with a low transmission rate, decreasing the sampling fraction resulted in multiple, separate clusters being identified where intermediate cases in transmission chains are missed. Outbreaks simulated with a high transmission rate were more robust to changes in the sampling fraction and largely resulted in a single cluster that included all sampled outbreak cases. When considering multiple outbreaks in a sampled jurisdiction seeded by different introductions, low genomic diversity between introduced cases caused outbreaks to be merged into large clusters. If the transmission and sampling fraction, and diversity between introductions was low, a combination of the spurious break-up of outbreaks and the linking of closely related cases in different outbreaks resulted in clusters that may appear informative, but these did not reflect the true underlying population structure. Conversely, genomic clusters matched the true population structure when there was relatively high diversity between introductions and a high transmission rate. CONCLUSION: Differences in epidemiology and sampling can impact our ability to identify genomic clusters that describe the underlying population structure. These findings can help to guide recommendations for the use of pathogen clustering in public health investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Disease Outbreaks , Genomics , Cluster Analysis
3.
Microorganisms ; 11(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677442

ABSTRACT

There is an impending crisis in healthcare brought about by a new era of untreatable infections caused by bacteria resistant to all available antibiotics. Thus, there is an urgent need to identify novel antimicrobial agents to counter the continuing threat posed by formerly treatable infections. We previously reported that a natural mineral clay known as Kisameet clay (KC) is a potent inhibitor of the organisms responsible for acute infections. Chronic bacterial infections present another major challenge to treatment by antimicrobials, due to their prolonged nature, which results in repeated exposure to antibiotics and a constant selection for antimicrobial resistance. A prime example is bacteria belonging to the Burkholderia cepacia complex (Bcc), which particularly causes some of the most serious chronic lung infections in patients with cystic fibrosis (CF) associated with unpredictable clinical outcomes, poor prognosis, and high mortality rates. Eradication of these organisms from CF patients with limited effective antimicrobial options is a major challenge. Novel therapeutic approaches are urgently required. Here, we report the in vitro antibacterial activity of KC aqueous suspensions (1-10% w/v) and its aqueous extract (L100) against a collection of extensively and multi-drug resistant clinical isolates of Bcc, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia isolated from patients with CF. These findings present a potential novel therapy for further investigation in the clinic.

4.
J Med Virol ; 95(1): e28423, 2023 01.
Article in English | MEDLINE | ID: mdl-36546412

ABSTRACT

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Cohort Studies , Phylogeny , COVID-19/epidemiology
5.
BMC Genomics ; 23(1): 710, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36258173

ABSTRACT

BACKGROUND: The COVID-19 pandemic remains a global public health concern. Advances in sequencing technologies has allowed for high numbers of SARS-CoV-2 whole genome sequence (WGS) data and rapid sharing of sequences through global repositories to enable almost real-time genomic analysis of the pathogen. WGS data has been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including methods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional surveillance and management of the disease. In this study, we present a novel method for producing stable genomic clusters of SARS-CoV-2 cases, cov2clusters, and compare the accuracy and stability of our approach to previous methods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, Canada. RESULTS: We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. Our method also showed high accuracy when predicting epidemiologically informed clusters from sequence data. CONCLUSIONS: Our new approach allows for the identification of stable clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both genomic and epidemiological data should be used in combination.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , COVID-19/epidemiology , Phylogeny , Genome, Viral , Genomics , Cluster Analysis
6.
Can J Public Health ; 113(5): 653-664, 2022 10.
Article in English | MEDLINE | ID: mdl-35834166

ABSTRACT

OBJECTIVES: To determine the extent and characteristics of in-school transmission of SARS-CoV-2 and determine risk factors for in-school acquisition of COVID-19 in one of Canada's largest school districts. METHODS: We conducted a retrospective chart review of all reportable cases of COVID-19 who attended a kindergarten-Grade 12 (K-12) school within the study area between January and June of the 2020-2021 school year. The acquisition source was inferred based on epidemiological data and, when available, whole genome sequencing results. Mixed effects logistic regression was performed to identify risk factors independently associated with in-school acquisition of COVID-19. RESULTS: Overall, 2877 cases of COVID-19 among staff and students were included in the analysis; of those, 9.1% had evidence of in-school acquisition. The median cluster size was two cases (interquartile range: 1). Risk factors for in-school acquisition included being male (adjusted odds ratio [aOR]: 1.59, 95% confidence interval [CI]: 1.17-2.17), being a staff member (aOR: 2.62, 95% CI: 1.64-4.21) and attending or working in an independent school (aOR: 2.28, 95% CI: 1.13-4.62). CONCLUSION: In-school acquisition of COVID-19 was uncommon during the study period. Risk factors were identified in order to support the implementation of mitigation strategies that can reduce transmission further.


RéSUMé: OBJECTIFS: Déterminer l'étendue et les caractéristiques de la transmission de la SRAS-CoV-2 en milieu scolaire, et déterminer les facteurs de risque de l'acquisition de la COVID-19 dans l'un des plus larges arrondissements scolaires du Canada. MéTHODES: Nous avons mené un examen rétrospectif des dossiers de tous les cas signalés de COVID-19 ayant fréquenté une école de niveau élémentaire, primaire ou secondaire dans la zone à l'étude entre janvier et juin de l'année scolaire 2020-2021. La source d'acquisition était inférée sur la base des données épidémiologiques et, lorsque disponibles, les résultats de séquençage du génome entier. Nous avons eu recours à des régressions logistiques multiniveaux pour identifier les facteurs indépendamment associés avec l'acquisition de la COVID-19 en milieu scolaire. RéSULTATS: Au total, 2 877 cas de COVID-19 parmi les employés et les élèves ont été inclus dans l'analyse; de ceux-ci, 9,1 % avaient acquis l'infection en milieu scolaire. La grosseur médiane des agrégats était de deux cas (écart interquartile : 1). Les risques facteurs de l'acquisition en milieu scolaire incluaient le fait d'être de sexe masculin (rapport de cotes ajusté [RCa] : 1,59, intervalle de confiance [IC] de 95% : 1,17-2,17), être un membre du personnel (RCa : 2,62, IC de 95% : 1,64-4,21) et fréquenter ou travailler dans une école indépendante (RCa : 2,28, IC de 95% : 1,13-4,62). CONCLUSION: Nos résultats suggèrent que l'acquisition de la COVID-19 en milieu scolaire était peu commune pendant la période d'étude. Des facteurs de risque ont été identifiés afin de supporter l'implémentation de mesures de contrôle pouvant réduire davantage la transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , British Columbia/epidemiology , COVID-19/epidemiology , Female , Humans , Male , Retrospective Studies , Schools
7.
J Immunol Methods ; 507: 113306, 2022 08.
Article in English | MEDLINE | ID: mdl-35705121

ABSTRACT

We developed a salivary assay for the detection of naturally acquired IgA antibody against Haemophilus influenzae type a (Hia) capsular polysaccharide in healthy Indigenous children from Northwestern Ontario, Canada. Hia-specific IgA antibody was detected in the saliva of 93% of Indigenous children aged 2-7 years.


Subject(s)
Haemophilus Infections , Antibodies, Bacterial , Child , Haemophilus Infections/diagnosis , Haemophilus influenzae , Humans , Immunoglobulin A , Infant , Saliva
8.
Microbiol Spectr ; 9(1): e0012721, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34132614

ABSTRACT

The Burkholderia cepacia complex (Bcc) comprises several species of closely related, versatile bacteria. Some Bcc strains produce 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), analogous to the 4-hydroxy-2-alkylquinolines of Pseudomonas aeruginosa. Using in silico analyses, we previously estimated that the hmqABCDEFG operon, which encodes enzymes involved in the biosynthesis of HMAQs, is carried by about one-third of Bcc strains, with considerable inter- and intraspecies variability. In the present study, we investigated by PCR, using consensus primers, the distribution of hmqABCDEFG in a collection of 312 Bcc strains (222 of clinical and 90 of environmental origins) belonging to 18 Bcc species. We confirmed that this operon is not distributed evenly among Bcc species. Among the 30% of strains bearing the hmqABCDEFG operon, we found that 92% of environmental isolates and 82% of clinically isolated Bcc strains produce levels of HMAQs detectable by liquid chromatography-mass spectrometry in at least one of the tested culture conditions. Among the hmqABCDEFG-positive but HMAQ-negative strains, none expressed the hmqA gene under the specified culture conditions. Interestingly, the hmqABCDEFG operon is more prevalent among plant root environment species (e.g., Burkholderia ambifaria and Burkholderia cepacia) and absent in species commonly found in chronically colonized individuals with cystic fibrosis (e.g., Burkholderia cenocepacia and Burkholderia multivorans), suggesting a role for the Hmq system in niche adaptation. We investigated the impact of the Hmq system on plant growth promotion and found that Pisum sativum root development by B. ambifaria required a functional HMAQ system. IMPORTANCE Environmental bacteria belonging to the various closely related species forming the Burkholderia cepacia complex (Bcc) can infect plants and animals, including humans. Their pathogenicity is regulated by intercellular communication, or quorum sensing, allowing them to collaborate instead of acting individually. Bcc organisms generally exploit interacting quorum sensing systems based on N-acyl-homoserine lactones as signaling molecules. Several Bcc strains also carry an hmqABCDEFG operon responsible for the biosynthesis of 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), molecules analogous to the Pseudomonas quinolone signal (PQS) system of P. aeruginosa. Our finding that the prevalences of the Hmq system and HMAQ production are very different between various Bcc species suggests a key role in niche adaptation or pathogenicity. This is supported by a significant reduction in plant growth promotion in the absence of HMAQ production for a beneficial Bcc strain.


Subject(s)
Bacterial Proteins/genetics , Burkholderia Infections/microbiology , Burkholderia cepacia complex/metabolism , Operon , Plant Roots/microbiology , Quinolines/metabolism , Bacterial Proteins/metabolism , Burkholderia cepacia complex/classification , Burkholderia cepacia complex/genetics , Burkholderia cepacia complex/isolation & purification , Chromatography, High Pressure Liquid , Cystic Fibrosis/microbiology , Humans , Mass Spectrometry , Plant Roots/growth & development , Quinolines/chemistry
9.
Ann Am Thorac Soc ; 17(12): 1549-1557, 2020 12.
Article in English | MEDLINE | ID: mdl-32946281

ABSTRACT

Rationale: Infections by Burkholderia species bacteria in cystic fibrosis (CF) may be transmissible, necessitating infection control measures, and remain a serious cause of morbidity and mortality. The last major study of Burkholderia epidemiology in Canada included cases up until July 2000 and was marked by the dominance of a limited number of epidemic clones of Burkholderia cenocepacia.Objectives: Describe the nationwide epidemiology of Burkholderia species infections in people with cystic fibrosis in Canada over the 17-year period since 2000.Methods: Isolates were collected from across Canada between August 2000 and July 2017 and identified to the species and, for isolates between 2015 and 2017, strain level.Results: We analyzed 1,362 Burkholderia isolates from at least 396 people with CF. Forty-nine percent (n = 666) of all isolates and 47% (n = 179) of new incident infections were identified as B. multivorans. The incidence of Burkholderia infection in the Canadian CF population did not change between 2000 and 2017 at 6 cases per 1,000 annually. Multilocus sequence typing analysis suggested minimal sharing of clones in Canada.Conclusions: The epidemiology of Burkholderia in CF in Canada has shifted from limited numbers of epidemic strains of B. cenocepacia to largely nonclonal isolates of B. multivorans, B. cenocepacia, and other species. Despite widespread infection control, however, Burkholderia species bacteria continue to be acquired by people with CF at an unchanged rate, posing a continued hazard.


Subject(s)
Burkholderia Infections , Burkholderia , Cystic Fibrosis , Burkholderia/genetics , Burkholderia Infections/epidemiology , Canada/epidemiology , Cystic Fibrosis/complications , Cystic Fibrosis/epidemiology , Humans , Incidence
10.
Front Microbiol ; 11: 1594, 2020.
Article in English | MEDLINE | ID: mdl-32760373

ABSTRACT

The objective of the present study was to provide an updated classification for Burkholderia cepacia complex (Bcc) taxon K isolates. A representative set of 39 taxon K isolates were analyzed through multilocus sequence typing (MLST) and phylogenomic analyses. MLST analysis revealed the presence of at least six clusters of sequence types (STs) within taxon K, two of which contain the type strains of Burkholderia contaminans (ST-102) and Burkholderia lata (ST-101), and four corresponding to the previously defined taxa Other Bcc groups C, G, H and M. This clustering was largely supported by a phylogenomic tree which revealed three main clades. Isolates of B. contaminans and of Other Bcc groups C, G, and H represented a first clade which generally shared average nucleotide identity (ANI) and average digital DNA-DNA hybridization (dDDH) values at or above the 95-96% ANI and 70% dDDH thresholds for species delineation. A second clade consisted of Other Bcc group M bacteria and of four B. lata isolates and was supported by average ANI and dDDH values of 97.2 and 76.1% within this clade and average ANI and dDDH values of 94.5 and 57.2% toward the remaining B. lata isolates (including the type strain), which represented a third clade. We therefore concluded that isolates known as Other Bcc groups C, G, and H should be classified as B. contaminans, and propose a novel species, Burkholderia aenigmatica sp. nov., to accommodate Other Bcc M and B. lata ST-98, ST-103, and ST-119 isolates. Optimized MALDI-TOF MS databases for the identification of clinical Burkholderia isolates may provide correct species-level identification for some of these bacteria but would identify most of them as B. cepacia complex. MLST facilitates species-level identification of many taxon K strains but some may require comparative genomics for accurate species-level assignment. Finally, the inclusion of Other Bcc groups C, G, and H into B. contaminans affects the phenotype of this species minimally and the proposal to classify Other Bcc group M and B. lata ST-98, ST-103, and ST-119 strains as a novel Burkholderia species is supported by a distinctive phenotype, i.e., growth at 42°C and lysine decarboxylase activity.

11.
J Med Microbiol ; 69(8): 1105-1113, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32597748

ABSTRACT

Introduction. Burkholderia cepacia complex (Bcc) bacteria, currently consisting of 23 closely related species, and Burkholderia gladioli, can cause serious and difficult-to-treat infections in people with cystic fibrosis. Identifying Burkholderia bacteria to the species level is considered important for understanding epidemiology and infection control, and predicting clinical outcomes. Matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF) is a rapid method recently introduced in clinical laboratories for bacterial species-level identification. However, reports on the ability of MALDI-TOF to accurately identify Bcc to the species level are mixed.Aim. The aim of this project was to evaluate the accuracy of MALDI-TOF using the Biotyper and VITEK MS systems in identifying isolates from 22 different Bcc species and B. gladioli compared to recA gene sequencing, which is considered the current gold standard for Bcc.Methodology. To capture maximum intra-species variation, phylogenetic trees were constructed from concatenated multi-locus sequence typing alleles and clustered with a novel k-medoids approach. One hundred isolates representing 22 Bcc species, plus B. gladioli, were assessed for bacterial identifications using the two MALDI-TOF systems.Results. At the genus level, 100 and 97.0 % of isolates were confidently identified as Burkholderia by the Biotyper and VITEK MS systems, respectively; moreover, 26.0 and 67.0 % of the isolates were correctly identified to the species level, respectively. In many, but not all, cases of species misidentification or failed identification, a representative library for that species was lacking.Conclusion. Currently available MALDI-TOF systems frequently do not accurately identify Bcc bacteria to the species level.


Subject(s)
Burkholderia cepacia/isolation & purification , Burkholderia gladioli/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Bacterial Typing Techniques/methods , Burkholderia cepacia/classification , Burkholderia gladioli/classification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , Fourier Analysis , Humans , Multilocus Sequence Typing , Phylogeny , Rec A Recombinases/genetics , Sequence Alignment
12.
PLoS One ; 15(1): e0227067, 2020.
Article in English | MEDLINE | ID: mdl-31931521

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is characterized by a progressive decline in lung function due to airway obstruction, infection, and inflammation. CF patients are particularly susceptible to respiratory infection by a variety of pathogens, and the inflammatory response in CF is dysregulated and prolonged. BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are proteins expressed in the upper airways that may have innate immune activity. We previously identified polymorphisms in the BPIFA1/BPIFB1 region associated with CF lung disease severity. METHODS: We evaluated whether the BPIFA1/BPIFB1 associations with lung disease severity replicated in individuals with CF participating in the International CF Gene Modifier Consortium (n = 6,365). Furthermore, we investigated mechanisms by which the BPIFA1 and BPIFB1 proteins may modify lung disease in CF. RESULTS: The association of the G allele of rs1078761 with reduced lung function was replicated in an independent cohort of CF patients (p = 0.001, n = 2,921) and in a meta-analysis of the full consortium (p = 2.39x10-5, n = 6,365). Furthermore, we found that rs1078761G which is associated with reduced lung function was also associated with reduced BPIFA1, but not BPIFB1, protein levels in saliva from CF patients. Functional assays indicated that BPIFA1 and BPIFB1 do not have an anti-bacterial role against P. aeruginosa but may have an immunomodulatory function in CF airway epithelial cells. Gene expression profiling using RNAseq identified Rho GTPase signaling pathways to be altered in CF airway epithelial cells in response to treatment with recombinant BPIFA1 and BPIFB1 proteins. CONCLUSIONS: BPIFA1 and BPIFB1 have immunomodulatory activity and genetic variation associated with low levels of these proteins may increase CF lung disease severity.


Subject(s)
Cystic Fibrosis/genetics , Genes, Modifier , Glycoproteins/genetics , Phosphoproteins/genetics , Pneumonia/genetics , Autoantigens/genetics , Autoantigens/metabolism , Cell Line , Cystic Fibrosis/complications , Cystic Fibrosis/immunology , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Glycoproteins/metabolism , Humans , Phosphoproteins/metabolism , Pneumonia/etiology , Pneumonia/immunology , Polymorphism, Single Nucleotide , Respiratory Mucosa/immunology
13.
Am J Transplant ; 19(3): 933-938, 2019 03.
Article in English | MEDLINE | ID: mdl-30091842

ABSTRACT

"Cepacia syndrome", caused by Burkholderia cepacia complex and often associated with cystic fibrosis, carries a high mortality rate. It is rare for Burkholderia multivorans, a species within the B. cepacia complex, to cause cepacia syndrome even among patients with cystic fibrosis. This is the first reported fatal case of cepacia syndrome caused by B. multivorans occurring in a pediatric liver transplant recipient who does not have cystic fibrosis. We describe the unique characteristics of this pathogen among the non-cystic fibrosis population and the importance of early recognition and treatment.


Subject(s)
Burkholderia Infections/microbiology , Burkholderia cepacia complex/pathogenicity , Fever of Unknown Origin/surgery , Liver Transplantation/adverse effects , Sepsis/etiology , Burkholderia Infections/complications , Fatal Outcome , Fever of Unknown Origin/pathology , Humans , Infant , Male , Sepsis/pathology
14.
Ann Am Thorac Soc ; 15(7): 827-836, 2018 07.
Article in English | MEDLINE | ID: mdl-29911888

ABSTRACT

RATIONALE: The extent of the genetic relatedness among Pseudomonas aeruginosa isolates and its impact on clinical outcomes in the cystic fibrosis (CF) population is poorly understood. OBJECTIVES: The objectives of this study were to determine the prevalence of clonal P. aeruginosa infection in Canada and to associate P. aeruginosa genotypes with clinical outcomes. METHODS: This was an observational study of adult and pediatric patients with CF across Canada. Isolates were typed using multilocus sequence typing. A clone was defined as sharing at least six of seven alleles. Genotyping results were associated with clinical outcomes, including forced expiratory volume in 1 second, body mass index, rate of pulmonary exacerbation, and death/transplant. RESULTS: A total of 1,537 P. aeruginosa isolates were genotyped to 403 unique sequence types (STs) in 402 individuals with CF. Although 39% of STs were shared, most were shared only among a small number of subjects, and the majority (79%) of the genetic diversity in P. aeruginosa isolates was observed between patients. There were no significant differences in clinical outcomes according to genotype. However, patients with a dynamic, changing ST infection pattern had both a steeper decline in forced expiratory volume in 1 second (-2.9% predicted change/yr, 95% confidence interval [CI] = -3.8 to -1.9 compared with 0.4, 95% CI = -0.3 to 1.0; P < 0.001) and body mass index (-1.0 percentile change/yr, 95% CI = -1.6 to -0.3 compared with -0.1, 95% CI = -0.7 to 0.5; P = 0.047) than those with a stable infection with the same ST. CONCLUSIONS: There was no widespread sharing of dominant clones in our CF population, and the majority of the genetic diversity in P. aeruginosa was observed between patients. Changing genotypes over time within an individual was associated with worse clinical outcomes.


Subject(s)
Cystic Fibrosis/epidemiology , DNA, Fungal/analysis , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/genetics , Adolescent , Adult , Canada/epidemiology , Cystic Fibrosis/microbiology , Female , Follow-Up Studies , Genotype , Humans , Male , Prevalence , Pseudomonas Infections/microbiology , Retrospective Studies , Young Adult
15.
Front Microbiol ; 8: 1679, 2017.
Article in English | MEDLINE | ID: mdl-28932212

ABSTRACT

Four Burkholderia pseudomallei-like isolates of human clinical origin were examined by a polyphasic taxonomic approach that included comparative whole genome analyses. The results demonstrated that these isolates represent a rare and unusual, novel Burkholderia species for which we propose the name B. singularis. The type strain is LMG 28154T (=CCUG 65685T). Its genome sequence has an average mol% G+C content of 64.34%, which is considerably lower than that of other Burkholderia species. The reduced G+C content of strain LMG 28154T was characterized by a genome wide AT bias that was not due to reduced GC-biased gene conversion or reductive genome evolution, but might have been caused by an altered DNA base excision repair pathway. B. singularis can be differentiated from other Burkholderia species by multilocus sequence analysis, MALDI-TOF mass spectrometry and a distinctive biochemical profile that includes the absence of nitrate reduction, a mucoid appearance on Columbia sheep blood agar, and a slowly positive oxidase reaction. Comparisons with publicly available whole genome sequences demonstrated that strain TSV85, an Australian water isolate, also represents the same species and therefore, to date, B. singularis has been recovered from human or environmental samples on three continents.

16.
Genome Res ; 27(4): 650-662, 2017 04.
Article in English | MEDLINE | ID: mdl-28325850

ABSTRACT

Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures-including immune responses and therapeutic interventions-shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2-20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.


Subject(s)
Burkholderia Infections/microbiology , Burkholderia cenocepacia/genetics , Cystic Fibrosis/microbiology , Phenotype , Polymorphism, Genetic , Adolescent , Animals , Biofilms , Burkholderia Infections/complications , Burkholderia cenocepacia/isolation & purification , Burkholderia cenocepacia/pathogenicity , Burkholderia cenocepacia/physiology , Child , Child, Preschool , Cystic Fibrosis/complications , Genotype , Humans , Lung/microbiology , Moths/microbiology , Virulence , Young Adult
17.
mSystems ; 1(3)2016.
Article in English | MEDLINE | ID: mdl-27822534

ABSTRACT

Burkholderia multivorans is an opportunistic pathogen capable of causing severe disease in patients with cystic fibrosis (CF). Patients may be chronically infected for years, during which the bacterial population evolves in response to unknown forces. Here we analyze the genomic and functional evolution of a B. multivorans infection that was sequentially sampled from a CF patient over 20 years. The population diversified into at least four primary, coexisting clades with distinct evolutionary dynamics. The average substitution rate was only 2.4 mutations/year, but notably, some lineages evolved more slowly, whereas one diversified more rapidly by mostly nonsynonymous mutations. Ten loci, mostly involved in gene expression regulation and lipid metabolism, acquired three or more independent mutations and define likely targets of selection. Further, a broad range of phenotypes changed in association with the evolved mutations; they included antimicrobial resistance, biofilm regulation, and the presentation of lipopolysaccharide O-antigen repeats, which was directly caused by evolved mutations. Additionally, early isolates acquired mutations in genes involved in cyclic di-GMP (c-di-GMP) metabolism that associated with increased c-di-GMP intracellular levels. Accordingly, these isolates showed lower motility and increased biofilm formation and adhesion to CFBE41o- epithelial cells than the initial isolate, and each of these phenotypes is an important trait for bacterial persistence. The timing of the emergence of this clade of more adherent genotypes correlated with the period of greatest decline in the patient's lung function. All together, our observations suggest that selection on B. multivorans populations during long-term colonization of CF patient lungs either directly or indirectly targets adherence, metabolism, and changes in the cell envelope related to adaptation to the biofilm lifestyle. IMPORTANCE Bacteria may become genetically and phenotypically diverse during long-term colonization of cystic fibrosis (CF) patient lungs, yet our understanding of within-host evolutionary processes during these infections is lacking. Here we combined current genome sequencing technologies and detailed phenotypic profiling of the opportunistic pathogen Burkholderia multivorans using sequential isolates sampled from a CF patient over 20 years. The evolutionary history of these isolates highlighted bacterial genes and pathways that were likely subject to strong selection within the host and were associated with altered phenotypes, such as biofilm production, motility, and antimicrobial resistance. Importantly, multiple lineages coexisted for years or even decades within the infection, and the period of diversification within the dominant lineage was associated with deterioration of the patient's lung function. Identifying traits under strong selection during chronic infection not only sheds new light onto Burkholderia evolution but also sets the stage for tailored therapeutics targeting the prevailing lineages associated with disease progression.

18.
Antimicrob Agents Chemother ; 60(1): 348-55, 2016 01.
Article in English | MEDLINE | ID: mdl-26503664

ABSTRACT

Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 µg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 µg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 µg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 µg/ml for B. cepacia and B. dolosa (24 h) and ≥100 µg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 µg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 µg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Burkholderia cepacia complex/drug effects , Burkholderia/drug effects , Cystic Fibrosis/microbiology , Tobramycin/pharmacology , Biofilms/growth & development , Burkholderia/growth & development , Burkholderia/ultrastructure , Burkholderia cepacia complex/growth & development , Burkholderia cepacia complex/ultrastructure , Child , Cystic Fibrosis/pathology , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Microscopy, Confocal , Species Specificity , Sputum/chemistry , Sputum/microbiology
19.
PLoS One ; 10(11): e0143472, 2015.
Article in English | MEDLINE | ID: mdl-26599356

ABSTRACT

Burkholderia cepacia complex bacteria are amongst the most feared of pathogens in cystic fibrosis (CF). The BCC comprises at least 20 distinct species that can cause chronic and unpredictable lung infections in CF. Historically the species B. cenocepacia has been the most prevalent in CF infections and has been associated in some centers with high rates of mortality. Modeling chronic infection by B. cenocepacia in the laboratory is challenging and no models exist which effectively recapitulate CF disease caused by BCC bacteria. Therefore our understanding of factors that contribute towards the morbidity and mortality caused by this organism is limited. In this study we used whole-genome sequencing to examine the evolution of 3 clonal clinical isolates of B. cenocepacia from a patient with cystic fibrosis. The first isolate was from the beginning of infection, and the second two almost 10 years later during the final year of the patients' life. These isolates also demonstrated phenotypic heterogeneity, with the first isolate displaying the mucoid phenotype (conferred by the overproduction of exopolysaccharide), while one of the later two was nonmucoid. In addition we also sequenced a nonmucoid derivative of the initial mucoid isolate, acquired in the laboratory by antibiotic pressure. Examination of sequence data revealed that the two late stage isolates shared 20 variant nucleotides in common compared to the early isolate. However, despite their isolation within 10 months of one another, there was also considerable variation between the late stage isolates, including 42 single nucleotide variants and three deletions. Additionally, no sequence differences were identified between the initial mucoid isolate and its laboratory acquired nonmucoid derivative, however transcript analysis indicated at least partial down regulation of genes involved in exopolysaccharide production. Our study examines the progression of B. cenocepacia throughout chronic infection, including establishment of sub-populations likely evolved from the original isolate, suggestive of parallel evolution. Additionally, the lack of sequence differences between two of the isolates with differing mucoid phenotypes suggests that other factors, such as gene regulation, come into play in establishing the mucoid phenotype.


Subject(s)
Burkholderia Infections/etiology , Burkholderia Infections/microbiology , Burkholderia cenocepacia/genetics , Cystic Fibrosis/complications , Genome, Bacterial , Alleles , Burkholderia cenocepacia/classification , Burkholderia cenocepacia/isolation & purification , Computational Biology , Evolution, Molecular , Female , Genes, Bacterial , High-Throughput Nucleotide Sequencing , Humans , Male , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide
20.
Sci Adv ; 1(6)2015 Jul.
Article in English | MEDLINE | ID: mdl-26457326

ABSTRACT

Cystic fibrosis lung disease is characterized by chronic airway infections with the opportunistic pathogen Pseudomonas aeruginosa and severe neutrophilic pulmonary inflammation. P. aeruginosa undergoes extensive genetic adaptation to the cystic fibrosis (CF) lung environment, and adaptive mutations in the quorum sensing regulator gene lasR commonly arise. We sought to define how mutations in lasR alter host-pathogen relationships. We demonstrate that lasR mutants induce exaggerated host inflammatory responses in respiratory epithelial cells, with increased accumulation of proinflammatory cytokines and neutrophil recruitment due to the loss of bacterial protease- dependent cytokine degradation. In subacute pulmonary infections, lasR mutant-infected mice show greater neutrophilic inflammation and immunopathology compared with wild-type infections. Finally, we observed that CF patients infected with lasR mutants have increased plasma interleukin-8 (IL-8), a marker of inflammation. These findings suggest that bacterial adaptive changes may worsen pulmonary inflammation and directly contribute to the pathogenesis and progression of chronic lung disease in CF patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...