Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 838(Pt 2): 155909, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35577085

ABSTRACT

The use of rare earths and yttrium (REY) in high-technology products is accompanied by their increasing release into the environment. Concerns regarding the (eco-)toxicity and bioaccumulation of these emerging contaminants highlight the need for research on REY uptake by (aquatic) plants. Duckweeds are widespread macrophytes in lentic waters and receive increasing attention as a potential protein-rich food additive. We here provide a baseline dataset for the complete set of REY in naturally grown duckweed assemblages and ambient freshwater and coastal brackish seawater. Our results show that duckweeds strongly bioaccumulate REY and incorporate them at the µg/kg level (dry matter basis). Their shale-normalised (SN) REY patterns are mildly fractionated relative to upper continental crust, regardless of sampling location and season. In contrast, the patterns of ambient waters increase from light to heavy REY (LREY and HREY, resp.) and may show prominent positive anthropogenic GdSN anomalies due to the presence of Gd-based contrast agents (Gd-CAs) applied for magnetic resonance imaging (MRI). The lack of GdSN anomalies in the duckweed assemblages reveals discrimination against the uptake of Gd-CAs by the macrophytes, providing further evidence for the conservative behaviour of these xenobiotics in the environment. High REY concentrations and apparent bulk distribution coefficients between duckweeds and ambient waters of up to 105 show that duckweeds are quasi-hyperaccumulators of REY. Uptake of LREY is up to two orders of magnitude higher than of HREY, possibly due to stronger complexation of HREY with dissolved ligands. The REY closely correlate with Mn but not with Ca, suggesting that uptake of REY and Mn occurs via the same pathway and revealing the negligible role of calcium oxalates. Our study demonstrates that while duckweeds are quasi-hyperaccumulators of REY, there is currently no risk that anthropogenic Gd from MRI contrast agents may enter the food chain via consumption of duckweeds.


Subject(s)
Araceae , Metals, Rare Earth , Water Pollutants, Chemical , Contrast Media , Gadolinium , Magnetic Resonance Imaging , Water Pollutants, Chemical/analysis , Yttrium
2.
Environ Pollut ; 291: 118230, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34597732

ABSTRACT

Rare earth elements and yttrium (REY) are critical elements for a wide range of applications and consumer products. Their growing extraction and use can potentially lead to REY and anthropogenic-REY chemical complexes (ACC-REY) being released in the marine environment, causing concern regarding their potential effects on organisms and ecosystems. Here, we critically review the scientific knowledge on REY sources (geogenic and anthropogenic), factors affecting REY distribution and transfer in the marine environment, as well as accumulation in- and effects on marine biota. Further, we aim to draw the attention to research gaps that warrant further scientific attention to assess the potential risk posed by anthropogenic REY release. Geochemical processes affecting REY mobilisation from natural sources and factors affecting their distribution and transfer across marine compartments are well established, featuring a high variability dependent on local conditions. There is, however, a research gap with respect to evaluating the environmental distribution and fate of REY from anthropogenic sources, particularly regarding ACC-REY, which can have a high persistence in seawater. In addition, data on organismal uptake, accumulation, organ distribution and effects are scarce and at best fragmentary. Particularly, the effects of ACC-REY at organismal and community levels are, so far, not sufficiently studied. To assess the potential risks caused by anthropogenic REY release there is an urgent need to i) harmonise data reporting to promote comparability across studies and environmental matrices, ii) conduct research on transport, fate and behaviour of ACC-REY vs geogenic REY iii) deepen the knowledge on bioavailability, accumulation and effects of ACC-REY and REY mixtures at organismal and community level, which is essential for risk assessment of anthropogenic REY in marine ecosystems.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Metals, Rare Earth/analysis , Seawater , Water Pollutants, Chemical/analysis , Yttrium
SELECTION OF CITATIONS
SEARCH DETAIL
...