Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(9): 105076, 2023 09.
Article in English | MEDLINE | ID: mdl-37481208

ABSTRACT

The bacterial cell wall consists of a three-dimensional peptidoglycan layer, composed of peptides linked to the sugars N-acetylmuramic acid (MurNAc) and GlcNAc. Unlike other bacteria, the pathogenic Tannerella forsythia, a member of the red complex group of bacteria associated with the late stages of periodontitis, lacks biosynthetic pathways for MurNAc production and therefore obtains MurNAc from the environment. Sugar kinases play a crucial role in the MurNAc recycling process, activating the sugar molecules by phosphorylation. In this study, we present the first crystal structures of a MurNAc kinase, called murein sugar kinase (MurK), in its unbound state as well as in complexes with the ATP analog ß-γ-methylene adenosine triphosphate (AMP-PCP) and with MurNAc. We also determined the crystal structures of K1058, a paralogous MurNAc kinase of T. forsythia, in its unbound state and in complex with MurNAc. We identified the active site and residues crucial for MurNAc specificity as the less bulky side chains of S133, P134, and L135, which enlarge the binding cavity for the lactyl ether group, unlike the glutamate or histidine residues present in structural homologs. In establishing the apparent kinetic parameters for both enzymes, we showed a comparable affinity for MurNAc (Km 180 µM and 30 µM for MurK and K1058, respectively), with MurK being over two hundred times faster than K1058 (Vmax 80 and 0.34 µmol min-1 mg-1, respectively). These data might support a structure-guided approach to development of inhibitory MurNAc analogs for pathogen MurK enzymes.


Subject(s)
Models, Molecular , Muramic Acids , Phosphotransferases , Tannerella forsythia , Muramic Acids/metabolism , Peptidoglycan/metabolism , Tannerella forsythia/enzymology , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Protein Structure, Tertiary , Crystallography, X-Ray , Catalytic Domain , Enzyme Activation
2.
Appl Microbiol Biotechnol ; 107(15): 4845-4852, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37326682

ABSTRACT

The fungal prenyltransferase ShPT from Stereum hirsutum was believed to prenylate 4-hydroxybenzyl alcohol and thereby be involved in the vibralactone biosynthesis. In this study, we demonstrate that hydroxynaphthalenes instead of benzyl alcohol or aldehyde were accepted by ShPT for regular C-prenylation in the presence of both dimethylallyl and geranyl diphosphate. Although the natural substrate of ShPT remains unknown, our results provide one additional prenyltransferase from basidiomycetes, which are less studied, in comparison to those from other sources. Furthermore, this study expands the chemical toolbox for regioselective production of prenylated naphthalene derivatives. KEY POINTS: •Basidiomycetous prenyltransferase •Biochemical characterization •A DMATS prenyltransferase prenylating hydroxynaphthalene derivatives.


Subject(s)
Dimethylallyltranstransferase , Dimethylallyltranstransferase/metabolism , Naphthols , Prenylation , Substrate Specificity
3.
RSC Adv ; 12(4): 2319-2331, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425270

ABSTRACT

Coxsackievirus A24 variant (CVA24v) is responsible for several outbreaks and two pandemics of the highly contagious eye infection acute hemorrhagic conjunctivitis (AHC). Currently, neither prevention (vaccines) nor treatments (antivirals) are available for combating this disease. CVA24v attaches to cells by binding Neu5Ac-containing glycans on the surface of cells which facilitates entry. Previously, we have demonstrated that pentavalent Neu5Ac conjugates attenuate CVA24v infection of human corneal epithelial (HCE) cells. In this study, we report on the structure-based design of three classes of divalent Neu5Ac conjugates, with varying spacer lengths, and their effect on CVA24v transduction in HCE cells. In relative terms, the most efficient class of divalent Neu5Ac conjugates are more efficient than the pentavalent Neu5Ac conjugates previously reported.

4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445134

ABSTRACT

Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.


Subject(s)
Antiviral Agents/pharmacology , Coxsackievirus Infections/diet therapy , Enterovirus C, Human/drug effects , N-Acetylneuraminic Acid/pharmacology , Conjunctivitis, Acute Hemorrhagic/drug therapy , Conjunctivitis, Acute Hemorrhagic/metabolism , Conjunctivitis, Acute Hemorrhagic/virology , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Glucose/metabolism , Humans , Lectins/metabolism , Ligands , Polysaccharides/metabolism , Receptors, Virus/metabolism
5.
EMBO Rep ; 22(5): e52325, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33904225

ABSTRACT

In light of the COVID-19 pandemic, there is an ongoing need for diagnostic tools to monitor the immune status of large patient cohorts and the effectiveness of vaccination campaigns. Here, we present 11 unique nanobodies (Nbs) specific for the SARS-CoV-2 spike receptor-binding domain (RBD), of which 8 Nbs potently inhibit the interaction of RBD with angiotensin-converting enzyme 2 (ACE2) as the major viral docking site. Following detailed epitope mapping and structural analysis, we select two inhibitory Nbs, one of which binds an epitope inside and one of which binds an epitope outside the RBD:ACE2 interface. Based on these, we generate a biparatopic nanobody (bipNb) with viral neutralization efficacy in the picomolar range. Using bipNb as a surrogate, we establish a competitive multiplex binding assay ("NeutrobodyPlex") for detailed analysis of the presence and performance of neutralizing RBD-binding antibodies in serum of convalescent or vaccinated patients. We demonstrate that NeutrobodyPlex enables high-throughput screening and detailed analysis of neutralizing immune responses in infected or vaccinated individuals, to monitor immune status or to guide vaccine design.


Subject(s)
COVID-19 , Single-Domain Antibodies , Antibodies, Viral/metabolism , Humans , Immunity , Pandemics , Protein Binding , SARS-CoV-2 , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/metabolism
6.
J Mol Biol ; 433(2): 166726, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33249189

ABSTRACT

Prenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity is still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinally, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds.


Subject(s)
Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Protein Engineering , Tryptophan/chemistry , Tryptophan/metabolism , Binding Sites , Catalysis , Dimethylallyltranstransferase/genetics , Hydrogen Bonding , Ligands , Models, Molecular , Molecular Conformation , Molecular Structure , Mutation , Prenylation , Protein Binding , Recombinant Proteins , Substrate Specificity
7.
ACS Chem Biol ; 15(10): 2683-2691, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32845119

ABSTRACT

Coxsackievirus A24 variant (CVA24v) and human adenovirus 37 (HAdV-37) are leading causative agents of the severe and highly contagious ocular infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis, respectively. Currently, neither vaccines nor antiviral agents are available for treating these diseases, which affect millions of individuals worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors facilitating entry into host cells. Previously, we and others have shown that derivatives based on sialic acid are effective in preventing HAdV-37 binding and infection of cells. Here, we designed and synthesized novel pentavalent sialic acid conjugates and studied their inhibitory effect against CVA24v and HAdV-37 binding and infection of human corneal epithelial cells. The pentavalent conjugates are the first reported inhibitors of CVA24v infection and proved efficient in blocking HAdV-37 binding. Taken together, the pentavalent conjugates presented here form a basis for the development of general inhibitors of these highly contagious ocular pathogens.


Subject(s)
Adenoviruses, Human/drug effects , Antiviral Agents/pharmacology , Enterovirus C, Human/drug effects , Sialic Acids/pharmacology , Adenoviruses, Human/chemistry , Binding Sites , Enterovirus C, Human/chemistry , Humans , Virus Attachment/drug effects , Virus Internalization/drug effects
8.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: mdl-32699083

ABSTRACT

Merkel cell polyomavirus (MCPyV) is a human double-stranded DNA tumor virus. MCPyV cell entry is unique among members of the polyomavirus family as it requires the engagement of two types of glycans, sialylated oligosaccharides and sulfated glycosaminoglycans (GAGs). Here, we present crystallographic and cryo-electron microscopic structures of the icosahedral MCPyV capsid and analysis of its glycan interactions via nuclear magnetic resonance (NMR) spectroscopy. While sialic acid binding is specific for α2-3-linked sialic acid and mediated by the exposed apical loops of the major capsid protein VP1, a broad range of GAG oligosaccharides bind to recessed regions between VP1 capsomers. Individual VP1 capsomers are tethered to one another by an extensive disulfide network that differs in architecture from previously described interactions for other PyVs. An unusual C-terminal extension in MCPyV VP1 projects from the recessed capsid regions. Mutagenesis experiments show that this extension is dispensable for receptor interactions.IMPORTANCE The MCPyV genome was found to be clonally integrated in 80% of cases of Merkel cell carcinoma (MCC), a rare but aggressive form of human skin cancer, strongly suggesting that this virus is tumorigenic. In the metastasizing state, the course of the disease is often fatal, especially in immunocompromised individuals, as reflected by the high mortality rate of 33 to 46% and the low 5-year survival rate (<45%). The high seroprevalence of about 60% makes MCPyV a serious health care burden and illustrates the need for targeted treatments. In this study, we present the first high-resolution structural data for this human tumor virus and demonstrate that the full capsid is required for the essential interaction with its GAG receptor(s). Together, these data can be used as a basis for future strategies in drug development.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Merkel cell polyomavirus/metabolism , Receptors, Cell Surface/metabolism , Capsid/ultrastructure , Capsid Proteins/genetics , Cell Line , Cryoelectron Microscopy , Humans , Merkel cell polyomavirus/genetics , Merkel cell polyomavirus/ultrastructure , N-Acetylneuraminic Acid/genetics , N-Acetylneuraminic Acid/metabolism , Protein Structure, Secondary , Receptors, Cell Surface/genetics
9.
Sci Rep ; 8(1): 18073, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30573753

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Org Lett ; 20(22): 7201-7205, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30378433

ABSTRACT

Mutation of the gatekeeping residues for prenyl donor selectivity in six dimethylallyl transferases significantly increased their activities toward geranyl diphosphate. Forty-two geranylated derivatives were obtained from 15 cyclic dipeptides by using the engineered enzymes. Taking cyclo-l-Trp-l-Trp as an example, the geranyl moiety can be attached to all seven possible positions of the indole nucleus. This study demonstrates a convenient way to increase the structural diversity of geranylated products by structure-based engineering of the available dimethylallyl transferases.


Subject(s)
Dimethylallyltranstransferase/chemistry , Dipeptides/chemistry , Diphosphates/chemistry , Diterpenes/chemistry , Indole Alkaloids/chemistry , Peptides, Cyclic/chemistry , Aspergillus/enzymology , Cloning, Molecular , Dimethylallyltranstransferase/genetics , Dipeptides/genetics , Molecular Structure , Peptides, Cyclic/genetics , Prenylation , Protein Engineering
11.
Org Biomol Chem ; 16(40): 7461-7469, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30270371

ABSTRACT

Microorganisms provide valuable enzyme machinery to assemble complex molecules. Fungal prenyltransferases (PTs) typically catalyse highly regiospecific prenylation reactions that are of significant pharmaceutical interest. While the majority of PTs accepts dimethylallyl diphosphate (DMAPP), very few such enzymes can use geranyl diphosphate (GPP) or farnesyl diphosphate (FPP) as donors. This catalytic gap prohibits the wide application of PTs for structural diversification. Structure-guided molecular modelling and site-directed mutagenesis of FgaPT2 from Aspergillus fumigatus led to the identification of the gatekeeping residue Met328 responsible for the prenyl selectivity and sets the basis for creation of GPP- and FPP-accepting enzymes. Site-saturation mutagenesis of the gatekeeping residue at position 328 in FgaPT2 revealed that the size of this side chain is the determining factor for prenyl selectivity, while its hydrophobicity is crucial for allowing DMAPP and GPP to bind.


Subject(s)
Aspergillus fumigatus/enzymology , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/genetics , Protein Engineering , Protein Prenylation , Amino Acid Sequence , Dimethylallyltranstransferase/metabolism , Models, Molecular , Protein Conformation
12.
Sci Rep ; 8(1): 12953, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154570

ABSTRACT

The peptidoglycan of Staphylococcus aureus is highly amidated. Amidation of α-D-isoglutamic acid in position 2 of the stem peptide plays a decisive role in the polymerization of cell wall building blocks. S. aureus mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin, indicating that targeting the amidation reaction could be a useful strategy to combat this pathogen. The enzyme complex that catalyzes the formation of α-D-isoglutamine in the Lipid II stem peptide was identified recently and shown to consist of two subunits, the glutamine amidotransferase-like protein GatD and the Mur ligase homolog MurT. We have solved the crystal structure of the GatD/MurT complex at high resolution, revealing an open, boomerang-shaped conformation in which GatD is docked onto one end of MurT. Putative active site residues cluster at the interface between GatD and MurT and are contributed by both proteins, thus explaining the requirement for the assembled complex to carry out the reaction. Site-directed mutagenesis experiments confirm the validity of the observed interactions. Small-angle X-ray scattering data show that the complex has a similar conformation in solution, although some movement at domain interfaces can occur, allowing the two proteins to approach each other during catalysis. Several other Gram-positive pathogens, including Streptococcus pneumoniae, Clostridium perfringens and Mycobacterium tuberculosis have homologous enzyme complexes. Combined with established biochemical assays, the structure of the GatD/MurT complex provides a solid basis for inhibitor screening in S. aureus and other pathogens.


Subject(s)
Bacterial Proteins/metabolism , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism , Cell Wall/metabolism , Multienzyme Complexes/metabolism , Peptidoglycan/metabolism , Staphylococcus aureus/metabolism , Amides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/chemistry , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/genetics , Catalytic Domain , Crystallography, X-Ray , Glutamine/analogs & derivatives , Glutamine/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Domains , Protein Interaction Mapping , Recombinant Proteins/metabolism
13.
Proc Natl Acad Sci U S A ; 115(2): 397-402, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29284752

ABSTRACT

Acute hemorrhagic conjunctivitis (AHC) is a painful, contagious eye disease, with millions of cases in the last decades. Coxsackievirus A24 (CV-A24) was not originally associated with human disease, but in 1970 a pathogenic "variant" (CV-A24v) emerged, which is now the main cause of AHC. Initially, this variant circulated only in Southeast Asia, but it later spread worldwide, accounting for numerous AHC outbreaks and two pandemics. While both CV-A24 variant and nonvariant strains still circulate in humans, only variant strains cause AHC for reasons that are yet unknown. Since receptors are important determinants of viral tropism, we set out to map the CV-A24 receptor repertoire and establish whether changes in receptor preference have led to the increased pathogenicity and rapid spread of CV-A24v. Here, we identify ICAM-1 as an essential receptor for both AHC-causing and non-AHC strains. We provide a high-resolution cryo-EM structure of a virus-ICAM-1 complex, which revealed critical ICAM-1-binding residues. These data could help identify a possible conserved mode of receptor engagement among ICAM-1-binding enteroviruses and rhinoviruses. Moreover, we identify a single capsid substitution that has been adopted by all pandemic CV-A24v strains and we reveal that this adaptation enhances the capacity of CV-A24v to bind sialic acid. Our data elucidate the CV-A24v receptor repertoire and point to a role of enhanced receptor engagement in the adaptation to the eye, possibly enabling pandemic spread.


Subject(s)
Conjunctivitis, Acute Hemorrhagic/metabolism , Enterovirus C, Human/metabolism , Intercellular Adhesion Molecule-1/metabolism , Receptors, Virus/metabolism , Amino Acid Sequence , Capsid Proteins/genetics , Capsid Proteins/metabolism , Conjunctivitis, Acute Hemorrhagic/epidemiology , Conjunctivitis, Acute Hemorrhagic/virology , Cryoelectron Microscopy , Disease Outbreaks , Enterovirus C, Human/genetics , Enterovirus C, Human/physiology , Humans , Intercellular Adhesion Molecule-1/chemistry , Mutation , N-Acetylneuraminic Acid/metabolism , Pandemics , Phylogeny , Protein Binding , Receptors, Virus/chemistry , Sequence Homology, Amino Acid , Viral Tropism/physiology
14.
Proc Natl Acad Sci U S A ; 114(15): 3933-3938, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28348210

ABSTRACT

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase involved in development and human disease, including cancer. It is currently thought that the four-point one, ezrin, radixin, moesin (FERM)-kinase domain linker, which contains autophosphorylation site tyrosine (Y) 397, is not required for in vivo FAK function until late midgestation. Here, we directly tested this hypothesis by generating mice with FAK Y397-to-phenylalanine (F) mutations in the germline. We found that Y397F embryos exhibited reduced mesodermal fibronectin (FN) and osteopontin expression and died during mesoderm development akin to FAK kinase-dead mice. We identified myosin-1E (MYO1E), an actin-dependent molecular motor, to interact directly with the FAK FERM-kinase linker and induce FAK kinase activity and Y397 phosphorylation. Active FAK in turn accumulated in the nucleus where it led to the expression of osteopontin and other FN-type matrix in both mouse embryonic fibroblasts and human melanoma. Our data support a model in which FAK Y397 autophosphorylation is required for FAK function in vivo and is positively regulated by MYO1E.


Subject(s)
Focal Adhesion Kinase 1/metabolism , Melanoma/metabolism , Myosins/metabolism , Skin Neoplasms/metabolism , Animals , Embryo Loss/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibroblasts/metabolism , Fibronectins/metabolism , Focal Adhesion Kinase 1/chemistry , Focal Adhesion Kinase 1/genetics , Humans , Melanoma/pathology , Mesoderm/embryology , Mice, Mutant Strains , Myosin Type I , Myosins/chemistry , Myosins/genetics , Osteopontin/genetics , Osteopontin/metabolism , Phosphorylation , Pregnancy , Protein Domains , Skin Neoplasms/pathology , Tyrosine/metabolism
15.
J Nat Prod ; 78(10): 2505-9, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26431157

ABSTRACT

The new compound precorallopyronin A is a stable precursor in the biosynthesis of the antibiotic corallopyronin A. This natural product was isolated from the producer strain Corallococcus coralloides B035. Together with various semisynthetically obtained corallopyronin A derivatives its antibacterial effects were evaluated. In combination with an X-ray crystallization model limitations of derivatization possibilities were revealed. The antibiotic potential of the novel precorallopyronin A is comparable to that of the structurally more complex corallopyronin A, which highlights that the additional chiral center is not essential for activity.


Subject(s)
DNA-Directed RNA Polymerases/antagonists & inhibitors , Lactones/chemistry , Myxococcales/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Belgium , Lactones/isolation & purification , Lactones/pharmacology , Soil Microbiology , Structure-Activity Relationship
16.
Chem Sci ; 6(11): 6525-6536, 2015 11 01.
Article in English | MEDLINE | ID: mdl-28757960

ABSTRACT

Corallopyronin A is a polyketide derived from the myxobacterium Corallococcus coralloides with potent antibiotic features. The gene cluster responsible for the biosynthesis of corallopyronin A has been described recently, and it was proposed that CorB acts as a ketosynthase to interconnect two polyketide chains in a rare head-to-head condensation reaction. We determined the structure of CorB, the interconnecting polyketide synthase, to high resolution and found that CorB displays a thiolase fold. Site-directed mutagenesis showed that the catalytic triad consisting of a cysteine, a histidine and an asparagine is crucial for catalysis, and that this triad shares similarities with the triad found in HMG-CoA synthases. We synthesized a substrate mimic to derivatize purified CorB and confirmed substrate attachment by ESI-MS. Structural analysis of the complex yielded an electron density-based model for the polyketide chain and showed that the unusually wide, T-shaped active site is able to accommodate two polyketides simultaneously. Our structural analysis provides a platform for understanding the unusual head-to-head polyketide-interconnecting reaction catalyzed by CorB.

17.
J Biol Chem ; 290(3): 1364-73, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25477507

ABSTRACT

The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C(4)- and C(7)-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C(3)-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Aspergillus fumigatus/enzymology , Tryptophan Synthase/chemistry , Tyrosine/chemistry , Catalysis , Chromatography, High Pressure Liquid , Fungal Proteins/chemistry , Hemiterpenes/chemistry , Indoles/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Mutagenesis , Mutagenesis, Site-Directed , Mutation , Organophosphorus Compounds/chemistry , Plasmids/metabolism , Prenylation , Protein Engineering/methods , Tryptophan/chemistry
18.
PLoS Pathog ; 10(10): e1004401, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25329320

ABSTRACT

The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC.


Subject(s)
Enterovirus C, Human/chemistry , Picornaviridae/chemistry , Receptors, Virus/immunology , Sialic Acids/chemistry , Binding Sites , Cell Line , Humans , Receptors, Virus/metabolism
19.
Angew Chem Int Ed Engl ; 53(28): 7354-9, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24862735

ABSTRACT

In eukaryotic cells, components of the 5' to 3' mRNA degradation machinery can undergo a rapid phase transition. The resulting cytoplasmic foci are referred to as processing bodies (P-bodies). The molecular details of the self-aggregation process are, however, largely undetermined. Herein, we use a bottom-up approach that combines NMR spectroscopy, isothermal titration calorimetry, X-ray crystallography, and fluorescence microscopy to probe if mRNA degradation factors can undergo phase transitions in vitro. We show that the Schizosaccharomyces pombe Dcp2 mRNA decapping enzyme, its prime activator Dcp1, and the scaffolding proteins Edc3 and Pdc1 are sufficient to reconstitute a phase-separation process. Intermolecular interactions between the Edc3 LSm domain and at least 10 helical leucine-rich motifs in Dcp2 and Pdc1 build the core of the interaction network. We show that blocking of these interactions interferes with the clustering behavior, both in vitro and in vivo.


Subject(s)
Endoribonucleases/metabolism , RNA, Messenger/metabolism , Schizosaccharomyces/enzymology , Crystallography, X-Ray , In Vitro Techniques , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
20.
Chem Biol ; 20(12): 1492-501, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24239009

ABSTRACT

Indole prenyltransferases AnaPT, CdpC3PT, and CdpNPT are known to catalyze the formation of prenylated pyrroloindoline diketopiperazines from tryptophan-containing cyclic dipeptides in one-step reactions. In this study, we investigated the different stereoselectivities of these enzymes toward all the stereoisomers of cyclo-Trp-Ala and cyclo-Trp-Pro. The stereoselectivities of AnaPT and CdpC3PT mainly depend on the configuration of the tryptophanyl moiety in the substrates, and they usually introduce the prenyl moiety from the opposite sides. CdpNPT showed lower stereoselectivity, and the structure of the second amino acid moiety in the substrates is important for the stereospecificity in its enzyme catalysis. Moreover, we determined the crystal structure of AnaPT in complex with thiolodiphosphate and compared it with the known structures of CdpNPT. Our results clearly revealed the presence of an indole binding mode that has so far not been characterized.


Subject(s)
Aspergillus fumigatus/enzymology , Diketopiperazines/metabolism , Dimethylallyltranstransferase/metabolism , Indoles/metabolism , Neosartorya/enzymology , Peptides, Cyclic/metabolism , Aspergillus fumigatus/chemistry , Aspergillus fumigatus/metabolism , Biocatalysis , Crystallography, X-Ray , Diketopiperazines/chemistry , Dimethylallyltranstransferase/chemistry , Dipeptides/chemistry , Dipeptides/metabolism , Indoles/chemistry , Models, Molecular , Neosartorya/chemistry , Neosartorya/metabolism , Peptides, Cyclic/chemistry , Prenylation , Proline/analogs & derivatives , Proline/chemistry , Proline/metabolism , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL