Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Neurobiol Learn Mem ; 209: 107906, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408534

ABSTRACT

Few studies have quantified what an individual remembers about a laboratory-controlled stressor. Here, we aimed to replicate previous work by using a modified version of the Trier Social Stress Test (TSST) to quantify participant memory for a stressful experience. We also aimed to extend this work by quantifying false and intrusive memories that ensued. One hundred and seven participants were exposed to the TSST (stress) or the friendly TSST (f-TSST; no stress). The TSST required participants to deliver a ten-minute speech in front of two laboratory panel members as part of a mock job interview; the f-TSST required participants to casually converse with the panel members about their interests. In both conditions, the panel members interacted with (central) or did not interact with (peripheral) several objects sitting on a desk in front of them. The next day, participants' memory for the objects was assessed with recall and recognition tests. We also quantified participants' intrusive memories on Days 2, 4, 6, and 8. Stressed participants recalled more central objects and exhibited greater recognition memory, particularly for central objects, than controls. Stress also led to less false recall and more intrusive memories on Days 2 and 4. Consistent with previous work, these findings suggest that participants exhibit enhanced memory for the central details of a stressful experience; they also extend prior work by showing that participants exposed to a stressor have less false memories and experience intrusive memories for several days following the event. The modified TSST paradigm used here may be useful for researchers studying not only what participants remember about a stressful event but also their susceptibility to intrusive memory formation.


Subject(s)
Hydrocortisone , Saliva , Humans , Memory , Stress, Psychological , Mental Recall
2.
Biology (Basel) ; 12(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37372060

ABSTRACT

Few studies have examined the time-dependent effects of stress on fear learning. Previously, we found that stress immediately before fear conditioning enhanced fear learning. Here, we aimed to extend these findings by assessing the effects of stress 30 min prior to fear conditioning on fear learning and fear generalization. Two hundred and twenty-one healthy adults underwent stress (socially evaluated cold pressor test) or a control manipulation 30 min before completing differential fear conditioning in a fear-potentiated startle paradigm. One visual stimulus (CS+), but not another (CS-), was associated with an aversive airblast to the throat (US) during acquisition. The next day, participants were tested for their fear responses to the CS+, CS-, and several generalization stimuli. Stress impaired the acquisition of fear on Day 1 but had no significant impact on fear generalization. The stress-induced impairment of fear learning was particularly evident in participants who exhibited a robust cortisol response to the stressor. These findings are consistent with the notion that stress administered 30 min before learning impairs memory formation via corticosteroid-related mechanisms and may help us understand how fear memories are altered in stress-related psychological disorders.

3.
Behav Brain Res ; 428: 113895, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35439523

ABSTRACT

Current pharmacotherapy for post-traumatic stress disorder (PTSD), a debilitating psychiatric condition that develops in a subset of traumatized individuals, is inadequate. Over the past two decades, numerous studies have shown that ketamine, a non-competitive NMDA receptor antagonist, exerts rapid antidepressant effects in both humans and rodents, but the anxiolytic profile of ketamine, as well as its ability to treat PTSD-related symptoms, is still unclear. Thus, we examined the ability of a single administration of ketamine to prevent the onset of PTSD-like sequelae in a chronic psychosocial stress model of PTSD. Adult male and female Sprague-Dawley rats were exposed to a cat on two occasions, in combination with chronic social instability. Immediately following the cat exposure on Day 1, rats were given intraperitoneal injections of 10 mg/kg or 15 mg/kg ketamine or vehicle; control rats were injected with vehicle. Three weeks after the second cat exposure, we assessed symptoms of hyperarousal and anxiety-like behavior in the rats. In males, chronic stress led to greater anxiety on the elevated plus maze and in the open field; in females, chronic stress resulted in an exaggerated startle response and greater anxiety in the open field. These effects were most effectively prevented by the administration of 10 mg/kg ketamine. These findings demonstrate that ketamine can prophylactically prevent the onset of PTSD-like behaviors in males and females. Their sex-dependent nature is consistent with previous preclinical research and highlights the need for future research to examine their neurobiological basis.


Subject(s)
Ketamine , Stress Disorders, Post-Traumatic , Animals , Anxiety/drug therapy , Anxiety/etiology , Disease Models, Animal , Female , Ketamine/pharmacology , Male , Rats , Rats, Sprague-Dawley , Stress Disorders, Post-Traumatic/drug therapy , Stress, Psychological/complications , Stress, Psychological/drug therapy
4.
Front Behav Neurosci ; 15: 675206, 2021.
Article in English | MEDLINE | ID: mdl-34220463

ABSTRACT

People with post-traumatic stress disorder (PTSD) exhibit heightened anxiety and enhanced negative feedback of the hypothalamus-pituitary-adrenal (HPA) axis. We previously reported that male rats exposed to a predator-based psychosocial stress model of PTSD exhibited comparable changes in anxiety-like behavior and HPA axis activity, including lower baseline levels of corticosterone and a greater suppression of corticosterone after dexamethasone administration. Here, we assessed whether we would observe similar effects in female rats exposed to this model. Adult female Sprague-Dawley rats were exposed to a cat on two occasions (separated by 10 days), in combination with chronic social instability. Three weeks after the second cat exposure, we assessed anxiety-like behavior on an elevated plus maze (EPM) and collected blood samples from rats in the absence or presence of dexamethasone to quantify serum corticosterone levels. Although stressed females did not display heightened anxiety on the EPM, they exhibited significantly lower overall corticosterone levels and a greater suppression of corticosterone after dexamethasone administration. The observation of significantly lower overall corticosterone levels in stressed females was replicated in a separate, independent experiment. These findings suggest that the predator-based psychosocial stress model of PTSD may be useful for studying mechanisms that underlie changes in HPA axis function in females exposed to trauma.

5.
Expert Opin Drug Discov ; 16(2): 135-146, 2021 02.
Article in English | MEDLINE | ID: mdl-32921163

ABSTRACT

INTRODUCTION: Existing pharmacological treatments for PTSD are limited and have been used primarily because of their effectiveness in other psychiatric conditions. To generate novel, PTSD specific pharmacotherapy, researchers must utilize animal models to assess the efficacy of experimental drugs. AREAS COVERED: This review includes a discussion of factors that should be considered when developing an animal model of PTSD, as well as descriptions of the most commonly used models. Researchers have utilized physical stressors, psychological stressors, or a combination of the two to induce PTSD-like physiological and behavioral sequelae in animals. Such models have provided researchers with a valuable tool to examine the neurobiological mechanisms underlying the condition. EXPERT OPINION: PTSD is a heterogeneous disorder that manifests as different symptom clusters in different individuals. Thus, there cannot be a one-size-fits-all approach to modeling the disorder in animals. Preclinical investigators must adopt a concentrated effort aimed at modeling specific PTSD subtypes and the distinct symptom profiles that result from specific types of human trauma. Moreover, researchers have focused so much on modeling a single PTSD syndrome in animals that studies examining only specific facets of the disorder are largely ignored. Future research employing animal models of PTSD requires greater focus on the nuances of PTSD.


Subject(s)
Disease Models, Animal , Drug Discovery/methods , Stress Disorders, Post-Traumatic/drug therapy , Animals , Drug Evaluation, Preclinical/methods , Humans , Stress Disorders, Post-Traumatic/physiopathology , Stress, Physiological/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology
6.
Stress ; 23(2): 125-135, 2020 03.
Article in English | MEDLINE | ID: mdl-31347429

ABSTRACT

People who are exposed to life-threatening trauma are at risk of developing posttraumatic stress disorder (PTSD). In addition to psychological manifestations, PTSD is associated with an increased risk of myocardial infarction, arrhythmias, hypertension, and other cardiovascular problems. We previously reported that rats exposed to a predator-based model of PTSD develop myocardial hypersensitivity to ischemic injury. This study characterized cardiac changes in histology and gene expression in rats exposed this model. Male rats were subjected to two cat exposures (separated by a period of 10 d) and daily cage-mate changes for 31 d. Control rats were not exposed to the cat or cage-mate changes. Ventricular tissue was analyzed by RNA sequencing, western blotting, histology, and immunohistochemistry. Multifocal lesions characterized by necrosis, mononuclear cell infiltration, and collagen deposition were observed in hearts from all stressed rats but none of the control rats. Gene expression analysis identified clusters of upregulated genes associated with endothelial to mesenchymal transition, endothelial migration, mesenchyme differentiation, and extracellular matrix remodeling in hearts from stressed rats. Consistent with endothelial to mesenchymal transition, rats from stressed hearts exhibited increased expression of α-smooth muscle actin (a myofibroblast marker) and a decrease in the number of CD31 positive endothelial cells. These data provide evidence that predator-based stress induces myocardial lesions and reprograming of cardiac gene expression. These changes may underlie the myocardial hypersensitivity to ischemia observed in these animals. This rat model may provide a useful tool for investigating the cardiac impact of PTSD and other forms of chronic psychological stress.Lay summaryChronic predator stress induces the formation of myocardial lesions characterized by necrosis, collagen deposition, and mononuclear cell infiltration. This is accompanied by changes in gene expression and histology that are indicative of cardiac remodeling. These changes may underlie the increased risk of arrhythmias, myocardial infarction, and other cardiac pathologies in people who have PTSD or other forms of chronic stress.


Subject(s)
Stress Disorders, Post-Traumatic , Animals , Cats , Disease Models, Animal , Endothelial Cells , Fibrosis , Inflammation/genetics , Male , Rats , Stress Disorders, Post-Traumatic/genetics , Stress, Psychological/genetics , Transcriptome
7.
Horm Behav ; 115: 104564, 2019 09.
Article in English | MEDLINE | ID: mdl-31421075

ABSTRACT

Traumatized women are more likely than traumatized men to develop post-traumatic stress disorder (PTSD). Still, the inclusion of females in animal models of PTSD has largely been avoided, likely due to the variable hormone profile of female rodents. Because a valid animal model of PTSD that incorporates females is still needed, we examined the influence of estrous stage and ovarian hormones on the female rat response to a predator-based psychosocial stress model of PTSD. Female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures and daily social instability; control rats were handled daily. Beginning on Day 32, rats underwent physiological or behavioral testing. In Experiment 1, vaginal smears were collected on days of the first and second cat exposures and each day of behavioral testing to determine estrous stage. In Experiments 2 and 3, ovariectomized or sham control rats were exposed to stress or control conditions. Then, they were given behavioral testing (Exp 2), or their hearts were isolated and subjected to ischemia/reperfusion on a Langendorff isolated heart system (Exp 3). Chronic stress increased anxiety-like behavior, irrespective of estrous stage or ovariectomy condition. Ovariectomized females displayed greater startle responses and anxiety-like behavior than sham rats. Stress had no impact on myocardial sensitivity to ischemic injury; however, ovariectomized females exhibited greater ischemia-induced infarction than sham rats. These findings suggest that ovarian hormones may prevent anxiety-like behavior and be cardioprotective in non-stressed controls, but they do not interact with chronic stress to influence the development of PTSD-like sequelae in female rats.


Subject(s)
Anxiety , Behavior, Animal/physiology , Estrous Cycle/physiology , Ovariectomy , Reflex, Startle , Stress Disorders, Post-Traumatic , Stress, Psychological , Animals , Anxiety/etiology , Anxiety/metabolism , Anxiety/physiopathology , Disease Models, Animal , Estrous Cycle/metabolism , Female , Rats , Rats, Sprague-Dawley , Reflex, Startle/physiology , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/physiopathology , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
8.
Behav Brain Res ; 371: 111980, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31145979

ABSTRACT

Extensive work has shown that stress time-dependently influences hippocampus-dependent learning and memory. In particular, stress that is administered immediately before learning enhances long-term memory, while stress that is temporally separated from learning impairs long-term memory. We have extended these findings by examining the impact of immediate, pre-learning stress on an amygdala-dependent fear conditioning task. One hundred and forty-one healthy participants underwent a stress (socially evaluated cold pressor test) or control manipulation immediately before completing differential fear conditioning in a fear-potentiated startle paradigm. Participants then completed extinction and extinction memory testing sessions 24 and 48 h later, respectively. Stress administered immediately before acquisition increased baseline startle responses and enhanced fear learning, as evidenced by greater fear-potentiated startle to the CS + . Although no group differences were observed during extinction training on Day 2, stressed participants exhibited evidence of impaired extinction processes on Day 3, an effect that was driven by group differences in acquisition. Importantly, stressed participants' cortisol responses to the stressor on Day 1 were positively associated with CS discrimination on Days 2 and 3. These findings suggest that stress immediately before fear conditioning strengthens fear memory formation and produces a more enduring fear memory, perhaps via corticosteroid activity. Such a paradigm could be useful for understanding factors that influence traumatic memory formation.


Subject(s)
Learning/physiology , Reflex, Startle/physiology , Stress, Psychological/metabolism , Amygdala/physiology , Brain/physiology , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Female , Hippocampus/physiology , Humans , Male , Memory/physiology , Young Adult
9.
Brain Cogn ; 133: 72-83, 2019 07.
Article in English | MEDLINE | ID: mdl-29880220

ABSTRACT

Certain susceptibility factors, such as genetic variants or specific physiological responses to stress, can dictate the effects of stress on learning and memory. Here, we examined the influence of the BclI polymorphism of the glucocorticoid receptor gene on the time-dependent effects of pre-learning stress on long-term memory. Healthy individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30 min before word list learning. Participants' memory for the words was tested immediately and 24 h after learning, and saliva samples were collected to genotype participants for the BclI polymorphism and to assess cortisol responses to the stressor. Results revealed that stress immediately before learning enhanced memory, while stress 30 min before learning impaired memory; these effects were largely selective to males and non-arousing words. Additionally, stress, independent of when it was administered, enhanced memory in non-carriers of the BclI polymorphism, while impairing memory in carriers; these effects were largely selective to males and participants exhibiting a robust cortisol response to stress. These results provide further evidence for time-dependent effects of stress on long-term memory and suggest that carriers of the BclI polymorphism might be more sensitive to the negative effects of corticosteroids on learning.


Subject(s)
Gene-Environment Interaction , Memory, Long-Term/physiology , Polymorphism, Single Nucleotide , Receptors, Glucocorticoid/genetics , Stress, Psychological/psychology , Adolescent , Female , Genotype , Humans , Hydrocortisone/analysis , Male , Saliva/chemistry , Time Factors , Young Adult
11.
Alcohol ; 70: 33-41, 2018 08.
Article in English | MEDLINE | ID: mdl-29775837

ABSTRACT

Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder typified by diagnostic symptom clusters including hyperarousal, avoidance, negative cognitions and mood, and intrusive re-experiencing of the traumatic event. Patients with PTSD have been reported to self-medicate with alcohol to ameliorate hyperarousal symptoms associated with the disorder. Research utilizing rodent models of PTSD to emulate this behavioral phenomenon has thus far yielded inconsistent results. In the present study, we examined the effects of a predator-based psychosocial stress model of PTSD on voluntary ethanol consumption. In the first of two experiments, following exposure to a 31-day stress or control paradigm, rats were singly housed during the dark cycle with free access to 1% sucrose solution or 10% ethanol, which was also sweetened with 1% sucrose. Over the course of a 20-day period of ethanol access, stressed rats consumed significantly less ethanol than non-stressed rats. These counterintuitive results prompted the completion of a second experiment which was identical to the first, except rats were also exposed to the two-bottle paradigm for 20 days before the stress or control paradigm. In the second experiment, after the stress manipulation, stressed rats exhibited significantly greater ethanol preference than non-stressed rats. These findings suggest that prior exposure to ethanol influences the subsequent effect of stress on ethanol intake. They also validate the use of the present model of PTSD to examine potential mechanisms underlying stress-related changes in ethanol-seeking behavior.


Subject(s)
Alcohol Drinking/psychology , Disease Models, Animal , Predatory Behavior , Stress Disorders, Post-Traumatic/psychology , Stress, Physiological , Animals , Choice Behavior , Male , Rats , Self Administration/psychology
12.
Horm Behav ; 93: 1-8, 2017 07.
Article in English | MEDLINE | ID: mdl-28414036

ABSTRACT

Research examining the effects of stress on false memory formation has been equivocal, partly because of the complex nature of stress-memory interactions. A major factor influencing stress effects on learning is the timing of stress relative to encoding. Previous work has shown that brief stressors administered immediately before learning enhance long-term memory. Thus, we predicted that brief stress immediately before learning would decrease participants' susceptibility to subsequent misinformation and reduce false memory formation. Eighty-four male and female participants submerged their hand in ice cold (stress) or warm (no stress) water for 3min. Immediately afterwards, they viewed an 8-min excerpt from the Disney movie Looking for Miracles. The next day, participants were interviewed and asked several questions about the video, some of which forced them to confabulate responses. Three days and three weeks later, respectively, participants completed a recognition test in the lab and a free recall test via email. Our results revealed a robust misinformation effect, overall, as participants falsely recognized a significant amount of information that they had confabulated during the interview as having occurred in the original video. Stress, overall, did not significantly influence this misinformation effect. However, the misinformation effect was completely absent in stressed participants who exhibited a blunted cortisol response to the stress, for both recognition and recall tests. The complete absence of a misinformation effect in non-responders may lend insight into the interactive roles of autonomic arousal and corticosteroid levels in false memory development.


Subject(s)
Behavior Control/psychology , Hydrocortisone/metabolism , Learning/physiology , Memory/physiology , Repression, Psychology , Stress, Psychological/metabolism , Adolescent , Adult , Arousal/physiology , Female , Heart Rate/physiology , Humans , Male , Memory Disorders/metabolism , Memory Disorders/prevention & control , Mental Recall/physiology , Young Adult
13.
Neurobiol Learn Mem ; 140: 71-81, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28254464

ABSTRACT

Extensive work over the past few decades has shown that certain genetic variations interact with life events to confer increased susceptibility for the development of psychological disorders. The deletion variant of the ADRA2B gene, which has been associated with enhanced emotional memory and heightened amygdala responses to emotional stimuli, might confer increased susceptibility for the development of post-traumatic stress disorder (PTSD) or related phenotypes by increasing the likelihood of traumatic memory formation. Thus, we examined whether this genetic variant would predict stress effects on learning and memory in a non-clinical sample. Two hundred and thirty-five individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30min prior to learning a list of words that varied in emotional valence and arousal level. Participants' memory for the words was tested immediately (recall) and 24h after learning (recall and recognition), and saliva samples were collected to genotype participants for the ADRA2B deletion variant. Results showed that stress administered immediately before learning selectively enhanced long-term recall in deletion carriers. Stress administered 30min before learning impaired recognition memory in male deletion carriers, while enhancing recognition memory in female deletion carriers. These findings provide additional evidence to support the idea that ADRA2B deletion variant carriers retain a sensitized stress response system, which results in amplified effects of stress on learning and memory. The accumulating evidence regarding this genetic variant implicates it as a susceptibility factor for traumatic memory formation and PTSD-related phenotypes.


Subject(s)
Memory, Long-Term/physiology , Receptors, Adrenergic, alpha-2/genetics , Stress, Physiological/genetics , Stress, Psychological/psychology , Adolescent , Alleles , Cold Temperature , Female , Genotype , Heart Rate/physiology , Heterozygote , Humans , Hydrocortisone/analysis , Learning/physiology , Male , Neuropsychological Tests , Saliva/chemistry , Sex Factors , Stress, Psychological/genetics , Young Adult
14.
Eur J Neurosci ; 45(5): 648-659, 2017 03.
Article in English | MEDLINE | ID: mdl-28002634

ABSTRACT

FK506 binding protein 51 (FKBP5) is a co-chaperone of heat shock protein 90 and significantly influences glucocorticoid receptor sensitivity. Single nucleotide polymorphisms (SNPs) in the FKBP5 gene are associated with altered hypothalamus-pituitary-adrenal (HPA) axis function, changes in the structure and function of several cognitive brain areas, and increased susceptibility to post-traumatic stress disorder, major depression, bipolar disorder and suicidal events. The mechanisms underlying these associations are largely unknown, but it has been speculated that the influence of these SNPs on emotional memory systems may play a role. In the present study, 112 participants were exposed to the socially evaluated cold pressor test (stress) or control (no stress) conditions immediately prior to learning a list of 42 words. Participant memory was assessed immediately after learning (free recall) and 24 h later (free recall and recognition). Participants provided a saliva sample that enabled the genotyping of three FKBP5 polymorphisms: rs1360780, rs3800373 and rs9296158. Results showed that stress impaired immediate recall in risk allele carriers. More importantly, stress enhanced long-term recall and recognition memory in non-carriers of the risk alleles, effects that were completely absent in risk allele carriers. Follow-up analyses revealed that memory performance was correlated with salivary cortisol levels in non-carriers, but not in carriers. These findings suggest that FKBP5 risk allele carriers may possess a sensitized stress response system, perhaps specifically for stress-induced changes in corticosteroid levels, which might aid our understanding of how SNPs in the FKBP5 gene confer increased risk for stress-related psychological disorders and their related phenotypes.


Subject(s)
Mental Recall , Polymorphism, Single Nucleotide , Stress, Psychological/genetics , Tacrolimus Binding Proteins/genetics , Female , Heterozygote , Humans , Male , Young Adult
15.
Exp Neurol ; 284(Pt B): 211-219, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27283115

ABSTRACT

Research on post-traumatic stress disorder (PTSD) is faced with the challenge of understanding how a traumatic experience produces long-lasting detrimental effects on behavior and brain functioning, and more globally, how stress exacerbates somatic disorders, including cardiovascular disease. Moreover, the design of translational research needs to link animal models of PTSD to clinically relevant risk factors which address why only a subset of traumatized individuals develop persistent psychopathology. In this review, we have summarized our psychosocial stress rodent model of PTSD which is based on well-described PTSD-inducing risk factors, including a life-threatening experience, a sense of horror and uncontrollability, and insufficient social support. Specifically, our animal model of PTSD integrates acute episodes of inescapable exposure of immobilized rats to a predator with chronic daily social instability. This stress regimen produces PTSD-like effects in rats at behavioral, cognitive, physiological, pharmacological and epigenetic levels of analysis. We have discussed a recent extension of our animal model of PTSD in which stress exacerbated coronary pathology following an ischemic event, assessed in vitro. In addition, we have reviewed our research investigating pharmacological and non-pharmacological therapeutic strategies which may have value in clinical approaches toward the treatment of traumatized people. Overall, our translational approach bridges the gap between human and animal PTSD research to create a framework with which to enhance our understanding of the biological basis of trauma-induced pathology and to assess therapeutic approaches in the treatment of psychopathology.


Subject(s)
Anxiety/psychology , Stress Disorders, Post-Traumatic/psychology , Stress, Psychological/psychology , Animals , Anxiety/physiopathology , Behavior, Animal/physiology , Cognition/physiology , Disease Models, Animal , Epigenesis, Genetic , Humans , Rats , Stress Disorders, Post-Traumatic/physiopathology , Stress, Psychological/physiopathology
16.
Front Psychiatry ; 7: 71, 2016.
Article in English | MEDLINE | ID: mdl-27199778

ABSTRACT

Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

17.
Stress ; 19(2): 264-8, 2016.
Article in English | MEDLINE | ID: mdl-26953626

ABSTRACT

Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.


Subject(s)
Heart/physiopathology , Myocardial Infarction/pathology , Myocardium/pathology , Recovery of Function/physiology , Sleep Deprivation/physiopathology , Animals , Blood Pressure/physiology , Diastole , Female , Male , Myocardial Infarction/physiopathology , Rats , Rats, Sprague-Dawley , Sex Factors
18.
J Neurosci Res ; 94(6): 437-44, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26511328

ABSTRACT

Our motivation in writing this Review arose not only from the great value in contributing to this special issue of the Journal of Neuroscience Research but also from the desire to express our opinion that the description of the amygdala as "dysfunctional" in posttraumatic stress disorder (PTSD) might not be appropriate. We acknowledge that excessive activation of the amygdala contributes to the cluster of PTSD symptoms, including hypervigilance, intrusive memories, and impaired sleep, that underlies the devastating mental and physical outcomes in trauma victims. The issue that we address is whether the symptoms of PTSD represent an impaired (dysfunctional) or sensitized (hyperfunctional) amygdala status. We propose that the amygdala in PTSD is hyperfunctional rather than dysfunctional in recognition of the fact that the individual has already survived one life-threatening attack and that another may be forthcoming. We therefore consider PTSD to be a state in which the amygdala is functioning optimally if the goal is to ensure a person's survival. The misery caused by a hyperfunctional amygdala in PTSD is the cost of inheriting an evolutionarily primitive mechanism that considers survival more important than the quality of one's life.


Subject(s)
Amygdala/pathology , Amygdala/physiopathology , Stress Disorders, Post-Traumatic/pathology , Animals , China , Humans , Stress Disorders, Post-Traumatic/physiopathology
19.
Stress ; 18(6): 645-53, 2015.
Article in English | MEDLINE | ID: mdl-26458179

ABSTRACT

Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response.


Subject(s)
Heart/physiopathology , Myocardial Ischemia/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Stress, Psychological/physiopathology , Animals , Anxiety/physiopathology , Cues , Disease Models, Animal , Female , Male , Rats , Rats, Sprague-Dawley , Sex Characteristics , Stress Disorders, Post-Traumatic/etiology , Stress, Psychological/complications
20.
Acta Psychol (Amst) ; 160: 127-33, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26233730

ABSTRACT

Most work has shown that post-learning stress enhances long-term memory; however, there have been recent inconsistencies in this literature. The purpose of the present study was to examine further the effects of post-learning stress on long-term memory and to explore any sex differences that may exist. Male and female participants learned a list of 42 words that varied in emotional valence and arousal level. Following encoding, participants completed a free recall assessment and then submerged their hand into a bath of ice cold (stress) or lukewarm (no stress) water for 3 min. The next day, participants were given free recall and recognition tests. Stressed participants recalled more words than non-stressed participants 24h after learning. Stress also enhanced female participants' recall of arousing words when they were in the follicular, but not luteal, phase. These findings replicate previous work examining post-learning stress effects on memory and implicate the involvement of sex-related hormones in such effects.


Subject(s)
Memory, Long-Term/physiology , Menstrual Cycle/metabolism , Sex Characteristics , Stress, Psychological/metabolism , Stress, Psychological/psychology , Arousal/physiology , Emotions/physiology , Female , Humans , Hydrocortisone/analysis , Hydrocortisone/metabolism , Learning/physiology , Male , Menstrual Cycle/psychology , Mental Recall/physiology , Pain Measurement/methods , Pain Measurement/psychology , Saliva/chemistry , Saliva/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL