Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838911

ABSTRACT

Achieving precise spatiotemporal control over the release of proangiogenic factors is crucial for vasculogenesis, the process of de novo blood vessel formation. Although various strategies have been explored, there is still a need to develop cell-laden biomaterials with finely controlled release of proangiogenic factors at specific locations and time points. We report on the developed of a near-infrared (NIR) light-responsive collagen hydrogel comprised of gold nanorods (GNRs)-conjugated liposomes containing proangiogenic growth factors (GFs). We demonstrated that this system enables on-demand dual delivery of GFs at specific sites and over selected time intervals. Liposomes were strategically formulated to encapsulate either platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), each conjugated to gold nanorods (GNRs) with distinct geometries and surface plasmon resonances at 710 nm (GNR710) and 1064 nm (GNR1064), respectively. Using near infrared (NIR) irradiation and two-photon (2P) luminescence imaging, we successfully demonstrated the independent release of PDGF from GNR710 conjugated liposomes and VEGF from GNR1064-conjugated liposomes. Our imaging data revealed rapid release kinetics, with localized PDGF released in approximately 4 min and VEGF in just 1 and a half minutes following NIR laser irradiation. Importantly, we demonstrated that the release of each GF could be independently triggered using NIR irradiation with the other GF formulation remaining retained within the liposomes. This light-responsive collagen hydrogels holds promise for various applications in regenerative medicine where the establishment of a guided vascular network is essential for the survival and integration of engineered tissues. STATEMENT OF SIGNIFICANCE: In this study, we have developed a light-responsive system with gold nanorods (GNRs)-conjugated liposomes in a collagen hydrogel, enabling precise dual delivery of proangiogenic growth factors (GFs) at specific locations and timepoints. Liposomes, containing platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), release independently under near- infrared irradiation. This approach allows external activation of desired GF release, ensuring high cell viability. Each GF can be triggered independently, retaining the other within the liposomes. Beyond its application in establishing functional vascular networks, this dual delivery system holds promise as a universal platform for delivering various combinations of two or more GFs.

2.
Cancer Cell Int ; 24(1): 199, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840117

ABSTRACT

The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].

3.
Sci Adv ; 10(19): eadn3510, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728407

ABSTRACT

Cardiovascular disease (CVD), the world's leading cause of death, exhibits notable epidemiological, clinical, and pathophysiological differences between sexes. Many such differences can be linked back to cardiovascular sexual dimorphism, yet sex-specific in vitro models are still not the norm. A lack of sex reporting and apparent male bias raises the question of whether in vitro CVD models faithfully recapitulate the biology of intended treatment recipients. To ensure equitable treatment for the overlooked female patient population, sex as a biological variable (SABV) inclusion must become commonplace in CVD preclinical research. Here, we discuss the role of sex in CVD and underlying cardiovascular (patho)physiology. We review shortcomings in current SABV practices, describe the relevance of sex, and highlight emerging strategies for SABV inclusion in three major in vitro model types: primary cell, stem cell, and three-dimensional models. Last, we identify key barriers to inclusive design and suggest techniques for overcoming them.


Subject(s)
Cardiovascular Diseases , Sex Characteristics , Humans , Cardiovascular Diseases/pathology , Female , Male , Animals , Sex Factors , Models, Biological
4.
Arterioscler Thromb Vasc Biol ; 44(3): e66-e81, 2024 03.
Article in English | MEDLINE | ID: mdl-38174560

ABSTRACT

Peripheral artery disease is an atherosclerotic disease associated with limb ischemia that necessitates limb amputation in severe cases. Cell therapies comprised of adult mononuclear or stromal cells have been clinically tested and show moderate benefits. Bioengineering strategies can be applied to modify cell behavior and function in a controllable fashion. Using mechanically tunable or spatially controllable biomaterials, we highlight examples in which biomaterials can increase the survival and function of the transplanted cells to improve their revascularization efficacy in preclinical models. Biomaterials can be used in conjunction with soluble factors or genetic approaches to further modulate the behavior of transplanted cells and the locally implanted tissue environment in vivo. We critically assess the advances in bioengineering strategies such as 3-dimensional bioprinting and immunomodulatory biomaterials that can be applied to the treatment of peripheral artery disease and then discuss the current challenges and future directions in the implementation of bioengineering strategies.


Subject(s)
Bioengineering , Peripheral Arterial Disease , Adult , Humans , Bioengineering/methods , Peripheral Arterial Disease/therapy , Biocompatible Materials , Cell- and Tissue-Based Therapy , Vascular Surgical Procedures , Treatment Outcome
5.
J Biomed Mater Res A ; 112(4): 524-533, 2024 04.
Article in English | MEDLINE | ID: mdl-37029655

ABSTRACT

With new daily discoveries about the long-term impacts of COVID-19, there is a clear need to develop in vitro models that can be used to better understand the pathogenicity and impact of COVID-19. Here, we demonstrate the utility of developing a model of endothelial dysfunction that utilizes human induced pluripotent stem cell-derived endothelial progenitors encapsulated in collagen hydrogels to study the effects of COVID-19 on the endothelium. These cells form capillary-like vasculature within 1 week after encapsulation and treating these cell-laden hydrogels with SARS-CoV-2 spike protein resulted in a significant decrease in the number of vessel-forming cells as well as vessel network connectivity quantified by our computational pipeline. This vascular dysfunction is a unique phenomenon observed upon treatment with SARS-CoV-2 SP and is not seen upon treatment with other coronaviruses, indicating that these effects were specific to SARS-CoV-2. We show that this vascular dysfunction is caused by an increase in inflammatory cytokines, associated with the COVID-19 cytokine storm, released from SARS-CoV-2 spike protein treated endothelial cells. Following treatment with the corticosteroid dexamethasone, we were able to prevent SARS-CoV-2 spike protein-induced endothelial dysfunction. Our results highlight the importance of understanding the interactions between SARS-CoV-2 spike protein and the endothelium and show that even in the absence of immune cells, the proposed 3D in vitro model for angiogenesis can reproduce COVID-19-induced endothelial dysfunction seen in clinical settings. This model represents a significant step in creating physiologically relevant disease models to further study the impact of long COVID and potentially identify mitigating therapeutics.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , Spike Glycoprotein, Coronavirus , Endothelial Cells , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Hydrogels/pharmacology
6.
Sci Rep ; 13(1): 11268, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438409

ABSTRACT

Organoids are three-dimensional structures of self-assembled cell aggregates that mimic anatomical features of in vivo organs and can serve as in vitro miniaturized organ models for drug testing. The most efficient way of studying drug toxicity and efficacy requires high-resolution imaging of a large number of organoids acquired in the least amount of time. Currently missing are suitable platforms capable of fast-paced high-content imaging of organoids. To address this knowledge gap, we present the OrganoidChip, a microfluidic imaging platform that incorporates a unique design to immobilize organoids for endpoint, fast imaging. The chip contains six parallel trapping areas, each having a staging and immobilization chamber, that receives organoids transferred from their native culture plates and anchors them, respectively. We first demonstrate that the OrganoidChip can efficiently immobilize intestinal and cardiac organoids without compromising their viability and functionality. Next, we show the capability of our device in assessing the dose-dependent responses of organoids' viability and spontaneous contraction properties to Doxorubicin treatment and obtaining results that are similar to off-chip experiments. Importantly, the chip enables organoid imaging at speeds that are an order of magnitude faster than conventional imaging platforms and prevents the acquisition of blurry images caused by organoid drifting, swimming, and fast stage movements. Taken together, the OrganoidChip is a promising microfluidic platform that can serve as a building block for a multiwell plate format that can provide high-throughput and high-resolution imaging of organoids in the future.


Subject(s)
Bone Plates , Hydrogels , Diagnostic Imaging , Doxorubicin , Organoids
7.
Tissue Eng Part A ; 29(11-12): 322-332, 2023 06.
Article in English | MEDLINE | ID: mdl-36855326

ABSTRACT

The potential of human induced pluripotent stem cell differentiated cardiomyocytes (hiPSC-CMs) is greatly limited by their functional immaturity. Strong relationships exist between cardiomyocyte (CM) structure and function, leading many in the field to seek ways to mature hiPSC-CMs by culturing on biomimetic substrates, specifically those that promote alignment. However, these in vitro models have so far failed to replicate the alignment that occurs during cardiac differentiation. We show that engineered alignment, incorporated before and during cardiac differentiation, affects hiPSC-CM electrochemical coupling and mitochondrial morphology. We successfully engineer alignment in differentiating human induced pluripotent stem cells (hiPSCs) as early as day 4. We uniquely apply optical redox imaging to monitor the metabolic changes occurring during cardiac differentiation. We couple this modality with cardiac-specific markers, which allows us to assess cardiac metabolism in heterogeneous cell populations. The engineered alignment drives hiPSC-CM differentiation toward the ventricular compact CM subtype and improves electrochemical coupling in the short term, at day 14 of differentiation. Moreover, we observe the glycolysis to oxidative phosphorylation switch throughout differentiation and CM development. On the subcellular scale, we note changes in mitochondrial morphology in the long term, at day 28 of differentiation. Our results demonstrate that cellular alignment accelerates hiPSC-CM maturity and emphasizes the interrelation of structure and function in cardiac development. We anticipate that combining engineered alignment with additional maturation strategies will result in improved development of mature CMs from hiPSCs and strongly improve cardiac tissue engineering.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Cells, Cultured , Cell Differentiation , Oxidation-Reduction
8.
bioRxiv ; 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36238721

ABSTRACT

With new daily discoveries about the long-term impacts of COVID-19 there is a clear need to develop in vitro models that can be used to better understand the pathogenicity and impact of COVID-19. Here we demonstrate the utility of developing a model of endothelial dysfunction that utilizes induced pluripotent stem cell-derived endothelial progenitors encapsulated in collagen hydrogels to study the effects of COVID-19 on the endothelium. We found that treating these cell-laden hydrogels with SARS-CoV-2 spike protein resulted in a significant decrease in the number of vessel-forming cells as well as vessel network connectivity. Following treatment with the anti-inflammatory drug dexamethasone, we were able to prevent SARS-CoV-2 spike protein-induced endothelial dysfunction. In addition, we confirmed release of inflammatory cytokines associated with the COVID-19 cytokine storm. In conclusion, we have demonstrated that even in the absence of immune cells, we are able to use this 3D in vitro model for angiogenesis to reproduce COVID-19 induced endothelial dysfunction seen in clinical settings.

9.
ACS Appl Bio Mater ; 5(5): 2307-2315, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35486915

ABSTRACT

Older people have been disproportionately vulnerable to the current SARS-CoV-2 pandemic, with an increased risk of severe complications and death compared to other age groups. A mix of underlying factors has been speculated to give rise to this differential infection outcome including changes in lung physiology, weakened immunity, and severe immune response. Our study focuses on the impact of biomechanical changes in lungs that occur as individuals age, that is, the stiffening of the lung parenchyma and increased matrix fiber density. We used hydrogels with an elastic modulus of 0.2 and 50 kPa and conventional tissue culture surfaces to investigate how infection rate changes with parenchymal tissue stiffness in lung epithelial cells challenged with SARS-CoV-2 Spike (S) protein pseudotyped lentiviruses. Further, we employed electrospun fiber matrices to isolate the effect of matrix density. Given the recent data highlighting the importance of alternative virulent strains, we included both the native strain identified in early 2020 and an early S protein variant (D614G) that was shown to increase the viral infectivity markedly. Our results show that cells on softer and sparser scaffolds, closer resembling younger lungs, exhibit higher infection rates by the WT and D614G variant. This suggests that natural changes in lung biomechanics do not increase the propensity for SARS-CoV-2 infection and that other factors, such as a weaker immune system, may contribute to increased disease burden in the elderly.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Pandemics , Spike Glycoprotein, Coronavirus/metabolism
10.
Rev Chem Eng ; 38(3): 347-361, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35400772

ABSTRACT

Tissue engineering, after decades of exciting progress and monumental breakthroughs, has yet to make a significant impact on patient health. It has become apparent that a dearth of biomaterial scaffolds that possess the material properties of human tissue while remaining bioactive and cytocompatible has been partly responsible for this lack of clinical translation. Herein, we propose the development of interpenetrating polymer network hydrogels as materials that can provide cells with an adhesive extracellular matrix-like 3D microenvironment while possessing the mechanical integrity to withstand physiological forces. These hydrogels can be synthesized from biologically-derived or synthetic polymers, the former polymer offering preservation of adhesion, degradability, and microstructure and the latter polymer offering tunability and superior mechanical properties. We review critical advances in the enhancement of mechanical strength, substrate-scale stiffness, electrical conductivity, and degradation in IPN hydrogels intended as bioactive scaffolds in the past five years. We also highlight the exciting incorporation of IPN hydrogels into state-of-the-art tissue engineering technologies, such as organ-on-a-chip and bioprinting platforms. These materials will be critical in the engineering of functional tissue for transplant, disease modeling, and drug screening.

11.
Acta Biomater ; 122: 133-144, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33359297

ABSTRACT

Vascularization of engineered scaffolds remains a critical obstacle hindering the translation of tissue engineering from the bench to the clinic. We previously demonstrated the robust micro-vascularization of collagen hydrogels with induced pluripotent stem cell (iPSC)-derived endothelial progenitors; however, physically cross-linked collagen hydrogels compact rapidly and exhibit limited strength. We have synthesized an interpenetrating polymer network (IPN) hydrogel comprised of collagen and norbornene-modified hyaluronic acid (NorHA) to address these challenges. This dual-network hydrogel combines the natural cues presented by collagen's binding sites and extracellular matrix (ECM)-mimicking fibrous architecture with the in situ modularity and chemical cross-linking of NorHA. We modulated the IPN hydrogel's stiffness and degradability by varying the concentration and sequence, respectively, of the NorHA peptide cross-linker. Rheological characterization of the photo-mediated gelation process revealed that the IPN hydrogel's stiffness increased with cross-linker concentration and was decoupled from the bulk NorHA content. Conversely, the swelling of the IPN hydrogel decreased linearly with increasing cross-linker concentration. Collagen microarchitecture remained relatively unchanged across cross-linking conditions, although the addition of NorHA delayed collagen fibrillogenesis. Upon iPSC-derived endothelial progenitor encapsulation, robust, lumenized microvascular networks developed in IPN hydrogels over two weeks. Subsequent computational analysis showed that an initial rise in stiffness increased the number of branch points and vessels, but vascular growth was suppressed in high stiffness IPN hydrogels. These results suggest that an IPN hydrogel consisting of collagen and NorHA is highly tunable, compaction resistant, and capable of supporting vasculogenesis.


Subject(s)
Hydrogels , Polymers , Hyaluronic Acid , Hydrogels/pharmacology , Stem Cells , Tissue Engineering
12.
Ann Biomed Eng ; 49(2): 780-792, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32939609

ABSTRACT

Adult hematopoietic stem cells (HSCs) produce the body's full complement of blood and immune cells. They reside in specialized microenvironments, or niches, within the bone marrow. The perivascular niche near blood vessels is believed to help maintain primitive HSCs in an undifferentiated state but demonstration of this effect is difficult. In vivo studies make it challenging to determine the direct effect of the endosteal and perivascular niches as they can be in close proximity, and two-dimensional in vitro cultures often lack an instructive extracellular matrix environment. We describe a tissue engineering approach to develop and characterize a three-dimensional perivascular tissue model to investigate the influence of the perivascular secretome on HSC behavior. We generate 3D endothelial networks in methacrylamide-functionalized gelatin hydrogels using human umbilical vein endothelial cells (HUVECs) and mesenchymal stromal cells (MSCs). We identify a subset of secreted factors important for HSC function, and examine the response of primary murine HSCs in hydrogels to the perivascular secretome. Within 4 days of culture, perivascular conditioned media promoted maintenance of a greater fraction of hematopoietic stem and progenitor cells. This work represents an important first-generation perivascular model to investigate the role of niche secreted factors on the maintenance of primary HSCs.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Tissue Engineering/methods , Animals , Cells, Cultured , Coculture Techniques , Female , Gelatin , Humans , Hydrogels , Mice, Inbred C57BL , Proteome
13.
Trends Mol Med ; 25(6): 482-493, 2019 06.
Article in English | MEDLINE | ID: mdl-31080142

ABSTRACT

Recent advances in developmental biology and biomedical engineering have significantly improved the efficiency and purity of cardiomyocytes (CMs) generated from pluripotent stem cells (PSCs). Regardless of the protocol used to derive CMs, these cells exhibit hallmarks of functional immaturity. In this Opinion, we focus on reactive oxygen species (ROS), signaling molecules that can potentially modulate cardiac maturation. We outline how ROS impacts nearly every aspect associated with cardiac maturation, including contractility, calcium handling, metabolism, and hypertrophy. Though the precise role of ROS in cardiac maturation has yet to be elucidated, ROS may provide a valuable perspective for understanding the molecular mechanisms for cardiac maturation under various conditions.


Subject(s)
Cell Differentiation , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Animals , Biomarkers , Culture Media, Conditioned/metabolism , Homeostasis , Humans , Oxidative Stress , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Signal Transduction
14.
J Vis Exp ; (147)2019 05 13.
Article in English | MEDLINE | ID: mdl-31132046

ABSTRACT

Induced pluripotent stem cells (iPSCs) are a patient-specific, proliferative cell source that can differentiate into any somatic cell type. Bipotent endothelial progenitors (EPs), which can differentiate into the cell types necessary to assemble mature, functional vasculature, have been derived from both embryonic and induced pluripotent stem cells. However, these cells have not been rigorously evaluated in three-dimensional environments, and a quantitative measure of their vasculogenic potential remains elusive. Here, the generation and isolation of iPSC-EPs via fluorescent-activated cell sorting are first outlined, followed by a description of the encapsulation and culture of iPSC-EPs in collagen hydrogels. This extracellular matrix (ECM)-mimicking microenvironment encourages a robust vasculogenic response; vascular networks form after a week of culture. The creation of a computational pipeline that utilizes open-source software to quantify this vasculogenic response is delineated. This pipeline is specifically designed to preserve the 3D architecture of the capillary plexus to robustly identify the number of branches, branching points, and the total network length with minimal user input.


Subject(s)
Blood Vessels/cytology , Cell Differentiation , Induced Pluripotent Stem Cells , Cell Culture Techniques , Cell Separation , Collagen/metabolism , Extracellular Matrix , Humans , Hydrogels/metabolism , Induced Pluripotent Stem Cells/cytology
15.
Regen Biomater ; 6(2): 61-73, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30967961

ABSTRACT

A functional microvascular system is imperative to build and maintain healthy tissue. Impaired microvasculature results in ischemia, thereby limiting the tissue's intrinsic regeneration capacity. Therefore, the ability to regenerate microvascular networks is key to the development of effective cardiovascular therapies. To stimulate the formation of new microvasculature, researchers have focused on fabricating materials that mimic the angiogenic properties of the native extracellular matrix (ECM). Here, we will review biomaterials that seek to imitate the physical cues that are natively provided by the ECM to encourage the formation of microvasculature in engineered constructs and ischemic tissue in the body.

16.
Tissue Eng Part A ; 25(19-20): 1426-1437, 2019 10.
Article in English | MEDLINE | ID: mdl-30727863

ABSTRACT

Anisotropic biomaterials can affect cell function by driving cell alignment, which is critical for cardiac engineered tissues. Recent work, however, has shown that pluripotent stem cell-derived cardiomyocytes may self-align over long periods of time. To determine how the degree of biomaterial substrate anisotropy impacts differentiating cardiomyocyte structure and function, we differentiated mouse embryonic stem cells to cardiomyocytes on nonaligned, semialigned, and aligned fibrous substrates and evaluated cell alignment, contractile displacement, and calcium transient synchronicity over time. Although cardiomyocyte gene expression was not affected by fiber alignment, we observed gradient- and threshold-based differences in cardiomyocyte alignment and function. Cardiomyocyte alignment increased with the degree of fiber alignment in a gradient-based manner at early time points and in a threshold-based manner at later time points. Calcium transient synchronization tightly followed cardiomyocyte alignment behavior, allowing highly anisotropic biomaterials to drive calcium transient synchronization within 8 days, while such synchronized cardiomyocyte behavior required 20 days of culture on nonaligned biomaterials. In contrast, cardiomyocyte contractile displacement had no directional preference on day 8 yet became anisotropic in the direction of fiber alignment on aligned fibers by day 20. Biomaterial anisotropy impact on differentiating cardiomyocyte structure and function is temporally dependent. Impact Statement This work demonstrates that biomaterial anisotropy can quickly drive desired pluripotent stem cell-derived cardiomyocyte structure and function. Such an understanding of matrix anisotropy's time-dependent influence on stem cell-derived cardiomyocyte function will have future applications in the development of cardiac cell therapies and in vitro cardiac tissues for drug testing. Furthermore, our work has broader implications concerning biomaterial anisotropy effects on other cell types in which function relies on alignment, such as myocytes and neurons.


Subject(s)
Cell Differentiation/drug effects , Myocytes, Cardiac/cytology , Polyesters/pharmacology , Animals , Anisotropy , Calcium Signaling/drug effects , Cell Line , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Myocytes, Cardiac/drug effects
17.
Ann Biomed Eng ; 47(5): 1250-1264, 2019 May.
Article in English | MEDLINE | ID: mdl-30783832

ABSTRACT

Collagen fibers are the primary structural elements that define many soft-tissue structure and mechanical function relationships, so that quantification of collagen organization is essential to many disciplines. Current tissue-level collagen fiber imaging techniques remain limited in their ability to quantify fiber organization at macroscopic spatial scales and multiple time points, especially in a non-contacting manner, requiring no modifications to the tissue, and in near real-time. Our group has previously developed polarized spatial frequency domain imaging (pSFDI), a reflectance imaging technique that rapidly and non-destructively quantifies planar collagen fiber orientation in superficial layers of soft tissues over large fields-of-view. In this current work, we extend the light scattering models and image processing techniques to extract a critical measure of the degree of collagen fiber alignment, the normalized orientation index (NOI), directly from pSFDI data. Electrospun fiber samples with architectures similar to many collagenous soft tissues and known NOI were used for validation. An inverse model was then used to extract NOI from pSFDI measurements of aortic heart valve leaflets and clearly demonstrated changes in degree of fiber alignment between opposing sides of the sample. These results show that our model was capable of extracting absolute measures of degree of fiber alignment in superficial layers of heart valve leaflets with only general a priori knowledge of fiber properties, providing a novel approach to rapid, non-destructive study of microstructure in heart valve leaflets using a reflectance geometry.


Subject(s)
Aortic Valve/chemistry , Collagen/chemistry , Extracellular Matrix/chemistry , Stress, Mechanical , Tensile Strength , Animals , Sheep
18.
Tissue Eng Part A ; 25(9-10): 746-758, 2019 05.
Article in English | MEDLINE | ID: mdl-30618333

ABSTRACT

IMPACT STATEMENT: Our work reinforces the role of extracellular matrix (ECM) density and matrix metalloprotease activity on the formation of microvasculature from induced pluripotent stem cell (iPSC)-derived vascular cells. The cell-matrix interactions discussed in this study underscore the importance of understanding the role of mechanoregulation and matrix degradation on vasculogenesis and can potentially drive the development of ECM-mimicking angiogenic biomaterials. Furthermore, our work has broader implications concerning the response of iPSC-derived cells to the mechanics of engineered microenvironments. An understanding of these interactions will be critical to creating physiologically relevant transplantable tissue replacements.


Subject(s)
Collagen/chemistry , Endothelial Progenitor Cells/metabolism , Extracellular Matrix/chemistry , Hydrogels/chemistry , Induced Pluripotent Stem Cells/metabolism , Neovascularization, Physiologic , Stem Cell Niche , Endothelial Progenitor Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology
19.
Cell Stem Cell ; 23(3): 322-323, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193131

ABSTRACT

Human pluripotent stem cell-derived cardiomyocytes represent a promising cell source for cardiac repair. However, their clinical translation is hindered by limited evidence for functional benefits in primate models, potential risks for arrhythmias, and teratoma formation. A recent study by Liu et al. (2018) makes significant progress on these critical issues.


Subject(s)
Human Embryonic Stem Cells , Induced Pluripotent Stem Cells , Myocardial Infarction , Animals , Cell Differentiation , Humans , Myocytes, Cardiac , Primates
20.
Exp Cell Res ; 370(1): 150-159, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29920245

ABSTRACT

Reactive oxygen species (ROS) scavengers such as beta-mercaptoethanol (BME) and monothiol glycerol (MTG) are extensively used in stem cell research to prevent cellular oxidative stress. However, how these antioxidant supplements impact stem cell cardiac differentiation, a process regulated by redox-signaling remains unknown. In this study, we found that removal of BME from the conventional high-glucose, serum-based differentiation medium improved cardiac differentiation efficiency by 2-3 fold. BME and MTG treatments during differentiation significantly reduced mRNA expression of cardiac progenitor markers (NKX2.5 and ISL1) as well as sarcomeric markers (MLC2A, MLC2V, TNNI3, MYH6 and MYH7), suggesting reduced cardiomyogenesis by BME or MTG. Moreover, BME and MTG altered the expression ratios between the sarcomeric isoforms. In particular, TNNI3 to TNNI1 ratio and MLC2V to MLC2A ratio were significantly lower in BME or MTG treated cells than untreated cells, implying altered cardiomyocyte phenotype and maturity. Lastly, BME and MTG treatments resulted in less frequent beating, slower contraction and relaxation velocities than untreated cells. Interestingly, none of the above-mentioned effects was observed with Trolox, a non-thiol based antioxidant, despite its strong antioxidant activity. This work demonstrates that commonly used antioxidant supplements may cause considerable changes to cellular redox state and the outcome of differentiation.


Subject(s)
Antioxidants/pharmacology , Cell Differentiation/drug effects , Gene Expression/drug effects , Protein Isoforms/metabolism , Sarcomeres/drug effects , Sulfhydryl Compounds/pharmacology , Animals , Cells, Cultured , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sarcomeres/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...